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Control System Design

The design of a computer system, like that of al digital systems, requires both
data manipulation capabilities(logical units, adders, multipliers, etc.) and control
capabilities. The data manipulation elements form the data path of the machine,
while controlling the flow-of data on that data path is the responsibility of the
control section. The design of the data path elements and the instructions that
identify the work to be done on the data paths have been the subjects of the
preceding chapters. In this chapter we will deal with methods used to control the
flow of information within a computer. Our intention is not to provide an in-
depth discussion of sequential design techniques; a number of excellent texts pro-
vide that material [Mano79, Flet80, McCI86, Bree89]. Our intention is to provide
some insights into different ways in which those methods can be applied in the
design of a control section of a computer.

The control system of a computer is basicaly a sequential system that
implements the fetch-decode-executefunction of instructionexecution. Sinceit is
a sequential system, it can be designed using the same techniques used to design
counters, controllers, or any of a wide variety of digital syslems. In this chapter,
we examine different techniques for implementing sequential systems, and apply
those techniques to the control of computational elements. Thus, our first task is
to review some of the concepts used in sequential design.

The application of sequential design techniqueswill result in a control sys-
tem that activates the appropriate clock lines, enables, and interface signas to
accomplish the work of the computer system. .However, before the control system
can be specified and implemented, it is necessary to identify the appropriate
clocks, enables, and other signals used in the system. Therefore, the first require-
ment of a computer system design is to develop a detailed data path block
diagram. This diagram must identify the control lines that can be used to manipu-
late data in the system. And with this diagram and the definition of the instruc-
tions to perform. RTL descriptionsof the data transfers needed can be developed.
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Thus. we will look again a the problem of data path definition and RTL
specifications,and see how they are used in the processof control system design.

The designer of a control system must know what signals are available for
the control and manipulation of the data in the system; these control lines are
identified by the detailed block diagram. In addition, the order of operations must
be. specified, and this information comes from the RTL descriptions of the work to
be done. With this global view of the system, a designer can select the most
appropriate sequential design technique and create a system that will assert the
control linesto do the work. We will look at different methods for implementing
the control systems, providing examplesof each.

Elements of Sequential Design: A Review

The circuits of the preceding chapters are al classified as combinationa circuits:
the outputs are functions only of the inputs. These can be modeled as shown in
Figure 5.1; the outputs will change whenever the inputs change. This model
applies to a variety of devices and circuits: random logic, ALUs (’181, *381), mul-
tiplexers (151, ’157), decoders (138, '154), memories, PLAs, and the like. Nor-
raally we like to think that these circuitsare perfect, that the outputs will change
instantaneoudly to their new value whenever the inputs change. However, associ-
ated with real devicesare red delays, and the outputs will follow the inputs after
some finite time delay. Some outputs may change during the finite time delay.
and resume their former values after the delay period has passed. This resultsin
glitchesthat can cause problemsin circuits, and care must be taken to prevent the
glitches from occurring or to ascertain that, if glitches do occur, they will not
cause problems. Thus, a designer must be aware of the timing restrictionsin the
process of creating the data path and the transfers represented by the RTL state-
ments.

If a system is to have outputs that reflect not only the current set of inputs,
but the history of the system as well, then a different model is necessary. An
addition to the mode of Figure 5.1 is shown in the model of Figure5.2. Here the
outputs are not only a function of the current inputs, but also the past history of
the system as well. This history is reflected in the " state™ of the machine, which
is the value stored in the collection of memory elements within the system. If
there are N memory elements, then there are 2V possible states that the system can
assume. Hence, systems with more than a few flip-flops are intractable; a system
with 20 bits of memory arranged in registersor other flip-flops would have more
than a million possible states.

Combinational
Logic

Inputs Outputs

[o o ]
000

Figure5.1. Block Diagram of Smple
combinational Circuit.
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The system depicted in Figure 5.2, where the outputs are functionsof both
the current state and the inputs, is called a Medy machine. This kind of machine
is useful in certain circumstances, but can cause problems because of the lack of
synchronization between inputs and states. That is, the outputs may be of varying
lengths, since the inputs change asynchronoudly with respect to the states of the
machine. A different, dightly more restricted, model for a sequential system is
shown in Figure 5.3. This type of system is called a Moore machine. Here the
outputs are functions of the present state only. Inputs then influence the outputs
only in that they can affect the next state of the sequential machine, but the out-
puts are not directly functions of the inputs. This model, and variations of it,
represent the controllers that we will consider for the control sections of comput-
ers and other digital systems. The outputs of the sequential machine will be the
control signals needed to manipulate data and move it within the syssem. The
inputs required to specify the desired sequence of steps consist of synchronization
flags, status bits, test conditions, and other information that influences the
behavior of the system. The designer's challenge, then, is to design a sequentia
system that will assert the outputs in an appropriate manner to accomplish the
work of the system. However, before the control system can be defined and the
sequenceof outputs specified, the data path must be specified and the control sig-
nals on the data path identified.

Data Path Formulation

The formulationof the data path for a computer or other digital system is a com-
plex task that is influenced by many factors. The foremost requirement is that the
system be able to perform the action required by the underlying task. Just how
that task is accomplished is a designer's choice; the decisions made by the
designer reflect his understanding of the task and the requirements imposed by
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system constraints. Congider, for example, the IBM System 360/370 family of
computer systems. This was one of the first familiesof computers in which the
different models were identified in the beginning, rather than having different
models announced as permitted by customer demand and marketing strategy. The
360 family was set up to cover a variety of performance capabilities and economic
ranges. Nevertheless, a program executed on different members of this family
should arrive at the same answer on each machine. The instruction set architec-
ture of the system appears the same to a programmer regardiessof the model on
which the program runs. However, the techniques used to implement the opera-
tions vary from model to model. The number of data paths, the arithmetic units,
the memory interactions, and the control system for each model are configured to
match different sets of economic and performanceconstraints. The same idea will
be true for al digital systems: the parts used, the data paths provided, and the
interfacing methods will be dictated by the intended use of the system. Some of
the constraintsand their implications are listed below:

e Economic: How expensive are the components used to build the system? This
includes not only the integrated circuits, but other componentsas well, such as
sockets, connectors, display elements, wire, printed circuit boards, and so on, as
well as manufacturingcosts.

Interface requirements: Many devices are specificaly designed to interface to
TTL components. However, other technologiescan require a different set of
voltages and currents for information exchange. This also applies to the proto-
cols required for the exchange.

* Speed; A variety of questionsmust be addressed. One of the first is to choose
the technology in which the system will be implemented. Lower speed require-
ments can utilize some MCS technologiesthat conserveenergy and do not have
fast cycle times. Higher speed technologies, such as ECL and GaAs, require
careful adherence to design constraints. However, another speed issue is the
extent of the use of concurrency within the system, from pipeline techniquesto
multiple data paths. Each of these options carries with it a set of constraints
that identify its range of usefulness.

* Power: Theamount of power that a system utilizes may be afactor in the sys-
tem. If the unit is to operate on battery power for extended periodsof time, or
be limited in the amount of available power, then the designer must select com-
ponents and techniquesaccordingly.

e Dynamic range. Arithmetic requirementsare often mandated by the intended
applications of the system and the alowable signa to noise ratio. A system
may be able to satisfy the data representationrequirementswith integer or fixed
point arithmetic of a certain number of hits; or the required dynamic range may
indicate that floating point operations are necessary. The data paths and arith-
metic capabilities must match system needs.

o Flexibility: Many digital systemsare created not to solve a single problem, but
to provide a device that can be used in a variety of applicationsto achieve a
reasonable solution. Therefore, the system must be flexible enough to be used
easily in any of a number of target areas.

Maintainability: Building a computer system. or other digital device, to satisfy
a particular need is only part of the overall problem. Because of device
failures, power surges, or other problemsthe system will a some time cease to
function properly. One of the desirable characteristics for digital systems is
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that they be maintainable. That is, the design and the implementation be done
in such a way that devicesand subsystemsthat are not functioning properly can
be identified and easily replaced.

e Environment: This nebulous heading is used here to include a variety of other
types of restrictions. If the system is satellite-based, it must not only conserve
power used, but it also may have a radiation hardening requirement. If the unit
is to operate in an arplane, it may have vibration tolerance requirements,
extended temperaturerequirements, or other restrictions.

Acceptable limits for these and other requirements are identified by the
specifications for the system to be designed. The designer must utilize the
ingenuity that he has to propose a design that will meet the specificationsof the
system. There are many different approaches to solving a given problem; indeed,
vaslly different data path solutions may be proposed which satisfy the require-
ments of the system. These approaches may use single bus implementations, mul-
tiple bus implementations, point to point techniques, or any of a variety of
approaches. In any case, the system must satisfy the requirements placed upon it
by its applicationarea and intended use.

The designer must select the data path componentsfrom the pool of avail-
able parts in the target technology, arrange the components and the interconnec-
tions so as to meet the system requirements, and identify the basic transfersand
manipulations required to perform the necessary work. We wish to make two
points. First, the design of the data path is basicaly independent of the control
design. There may be factors in the intended control design that influence the
data path formation, and there may be elementsof the data path that bear on the
control design, but basicaly they are two different problems. Second, having
identified the elements in the data path, a designer must then identify the signals
that will control the flow of information within the data path. It is the responsibil-
ity of the control section to assert the signalsin such a way that the appropriate
work is accomplished, and, once the signals are identified, the design of the con-
trol section can proceed to achievethat objective.

To reiteratethe points made above, the designer must:

o First select an appropriate technology and a set of componentsin that technol-
ogy to provide for the needsof the system.

e |nterconnect the componentsin such a way that the work of the system can ke
accomplished.

e Then, using a register transfer language or other means of specifying the action
to take place, identify the data transfers and arithmetic required by the system.

® |dentify the control signalsrequired to accomplish the work of the system.

When the data path has been defined to this level, the design of the control por-
tion of the circuitry can proceed.

This process is best illustrated by an example. The example chosen here,
and the other examples in this chapter, are contrived to illustrate specific points,
and do not necessarily reflect the "trickiest” way to accomplish some work. But
once the principles have been identified, the designer can then proceed to apply
them to other designs. The following example, like the other examples in this
chapter, is more extensive than those in earlier chapters; for instance, Section 5.7
consists entirely of two different implementation techniques applied to the same
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machine. Therefore, the examples here are interwoven with the text, not separated
asashort example to illustrate a single point.

Our first example of a digital system is the calculation of an inner dot pro-
duct. Thisis used repeatedly in mathematics for doing matrix manipulations; it is
also used in digital signal processing for transversal filters. The example is to
design a finite impulse response (FHRY=gtigitat filter with 25 coefficients. The equa-
tion for this calculation is: - T T

where S represents samples of an input stream and C; represents constant
coefficients. We will assume that the system is to stand aone; that is, that the
system will contain an A/D converter to provide samples and a D/A converter to
accept outputs. We will also assume that the coefficients are known and constant.
The data manipulations involved in the AR process are shown in Figure 5.4. The
input is sent to a delay network, which saves 25 values of the data stream. Each
of the delayed values forms one of the s; of the above equation. Each sample is
multiplied by its corresponding coefficient (C,), and al of the resulting values are
summed to form the fina result. The system architect/designer has the task of
implementing the data manipulations represented by the HR equation in real
hardware.

The network shown in Figure 5.4 could be implemented directly in
hardware. However, that would require 25 separate multipliers and some mechan-
ism for summing 25 results in paralel. A more conservative solution is to build a
system around a multiply/accumulator (MAC), a device that will perform a multi-
ply and an add in each clock cycle. These modules have been available for
several years and are applicable to a variety of different calculations; the FIR
example is an ideal use for this module, since the chip performs al of the arith-
metic needed to obtain the result. To present the appropriate values to the MAC,
we will utilize memories to store the data and the coefficients. Thus, our problem
will be to design a system that will accept a sample, store it in a memory, and
then perform the calculations identified by the above equation using the current
sample and the previous 24 samples.

Sample Delay (Register)

Coefficient

Figure 54. Data Manipulations Involved in Inner Dot Product.
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A smple block diagram of a piece of hardware to do thisis shown in Figure
5.5. The MAC can be connected to the other elements of the system in a variety
of ways to satisfy different system requirements. The solution shown is capable
of afairly high computation rate, and yet is simple in its implementation. The
elementsof the system, their names and their responsibilitiesare as follows:

e Coefficientmemory: (C_MEM(k]) This memory contains the constants (C;)
needed by the agorithm. The memory chosen here is a small FROM (pro-
grammableread only memory).

o Coefficientmemory address register: (C_ADR) This is acounter used to iden-
tify the current coefficient. It must start at zero for each iteration and incre-
ment through the coefficient numbers, which are used directly as coefficient
addresses.

e Samplememory: (S_MEM [K]) The sample memory is used to store the current
sample and the previous 24; actualy the memory is made of a number of
RAMs, s0 32 valuesare stored, but only 25 used for any single calculation.

* Sample memory address register: (S_ADR) This counter is initialized to the
address of the current sample; it is then incremented to point at the preceding
samplesin order.

Initial sample address register: (I_ADR) This register identifec the startiag
point of the algorithm for each pass. The correct starting point for the current
iteration is one less than the starting point for the previous iteration. Thus, this
counter will decrementonce each pass.

AD converter: (ADIN) This module provides the new data for each iteration.
We assume that the time a which conversion begins is controlled by an

S-ADR l C-ADR
I

RAM PROM

Analog AD
Input 1 converter

/ o \

Memory Memory

Muiiel
Accumulator

Qut Reg |

D/A
Conveater

Ardq:% Output

Figure55 Smple Data Peth Block Diegram for Finite Impulse
Response Sydem.

Chap. 5: Control System Design 199



external source. When new data is available, a ready Rag will be asserted.
Thus, testing this ready Rag will identify when the algorithm should be per-
formed.

DIA converter: (DAOUT) This module accepts the output of each interaction
and convertsit to an appropriate analog vaue.

Output register: (OUT) This is a register that isolates the D/A converter from
the valueson the output of the MAC during the cal culation process.

Multiplier/accumulator module: This module has the responsibility for doing
the arithmetic needed by the agorithm. It will do each multiply, then add the
vaue to a running sum. There are three registersinterna to the system, two
input registers(X, Y) and an output register (P).

When the designer has arrived at a data path representation such as that
shown in Figure 5.5, the next step is to identify the work to take place. As
identified in the formuladefining the calculation, 25 coefficientswill be multiplied
by 25 data values, and the results of the multiplies summed to the result. Assum-
ing that the RAM and FROM (for the data and coefficient storage) both contain 32
locations, these memories can be visualized as shown in Figure 5.6. Part a shows
the coefficient storage. These values are always used in order, from location 0 to
location 24. Thus, at the beginning of each iteration the address register for the
coefficients will be set to zero. Figure 5.6(b) indicatesthat the first vaue received
will be placed in location 0 of the RAM, and then the initial sample address regis-
ter will be decremented. Thus, the next location to be filled by a sample value
will be location 31. Figure5.6(c) shows the contentsof the RAM after 33 samples
have been received. * The 33 sample (Sample 32) overwrites the first sample
(Sample 0). The output of the FIR calculation uses the 25 most recent samples,
dso identified in part c. The 25 mogt recent samples utilize a different portion of
the RAM for each iteration. The samples used for the 41% iteration (Sample 40
through Sample 16) are identified in of Figure 5.6(d). Once the basic algorithmis
understood, we can specify the work to be done with RTL statements:

start: if (ADIN nat ready) goto start Check input data.
0 C-ADR Clear coefficient address.
I_ADR S_ADR Loed sample adaress

ADIN 1—: S MEM{s_APR] Daa to sample memary.

I_ADR I_ADR Decrement initid address.
S_MEMJ[S-ADR ] X Load sampleto X reg.
C_MEM][C-ADR ) Y Load coeffidentto Y reg.

S-ADR + | S_ADR Increment sample address.
C_ADR + | C_ADR Increment coefficient address.
. TXxY P Loed product register.
S_MEM[S_ADR] X Loed sample to X reg.
C_MEM|[C-ADR] Y Loed coefficient to Y reg.
S-ADR t | S-ADR Increment sample adaress
C-ADR * | C-ADR Increment coefficient address.
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Figure 56 Coefficient and Data Storage for FIR Example.
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This identifies the work needed to perform the appropriate calculations, as well as
the possible parallelism of simultaneous events. The system waits for new data to
become available (ADIN ready), a which point the data processing begins. The
first step is to clear the coefficient address and load the sample address register
from the initial sample addressregister. These two eventscan happen simultane-
oudly. Then, the input value is loaded into the sample memory (at the address
just loaded into C_ADDR from 1_ADDR), and the initial sample address is decre-
mented. Again, these two events can occur at the same time. The next step is to
load the first sample and the first coefficient into the X and Y registers of the
MAC, as well as increment the sample addressregister and the coefficient address
register. The next group of transfers specify loading a product into P, a new sam-
ple into X, a new coefficient into Y, and incrementing the address registers. At
this point a loop is entered, which adds the new product to the running sum, loads
a new sample and a new coefficient, and incrementsthe address registers. This
continues until the process is done, which will occur when the final sample-
coefficient product has been added to the running sum and is available at the
inputs of the output register. This condition is checked simply by counting the
number of operations, and when the result is ready moving on to the next transac-
tion. The final transfer moves the newly calculated value to the output register
(@Jn), at which poaint control returns to the beginning to start over again.

If al of the transfers in the RTL occur instantaneoudy, then there is no
problem with the system. However, in red systemseach of the actions identified
in the RTL takes a nonzero amount of time to accomplish. One of the challenges
of the designer is to create a control section that will manipulate the signals in
such away that the transfers maintain the appearancedf the simultaneity specified
in the RTL. To prepare to design such a control section, we will create a state
diagram that identifiesthe action of the RTL. We will see that this state diagram
can be used to directly implement an appropriate control section. This state
diagram is shown in Figure 5.7. It is called a preliminary state diagram, because
it will be modified slightly before the actual implementation of the control sec-
tion. The statesthat do not specify any work are added for timing purposes, and

“we will discuss them in connection with the actual implementation.

When the RTL descriptionof operationsand the state diagram are ready, the
designer must completethe details of the data path block diagram by choosing the
exact parts to be used in the system and identifying the control signals required on
those parts to perform the work. Figure 5.8 shows the system of Figure 5.5 with
the parts specified and the control signalsidentified. Note that, although the same
parts are used both for the coefficient memory address register and the sample
memory addressregister, the control lines needed are not the same. Both address
registers need clocks, so that signa is shown for both blocks. However, the
coefficient MAR needs to be cleared but not loaded, and the sample MAR needs to
be loaded but not cleared. These differences are evident in the control signas
included in Figure 5.8. Note also that control lines of the components that do not
need to be manipulated during the computation are not identified in the diagram.
It is assumed that the designer has studied the specifications of the components
and made provisions for the other signals. Some of these will be grounded, others
tied to a high level, and so on.

To summarize, the creation of the data path can be done in a manner that
is relatively independent from the choice of a control mechanism for a digital
system. The designer must first become familiar with the work required of the
system. This includes the operations needed, the limitationsof the data represen-
tation and manipulation methods, the order of events, and other considerations.
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Figure57. Prdiminary State Diagram for Finite Impulse Response System.
With the system and device specifications in mind, the designer then organizes

appropriate devices in such a way that the necessary data manipulations can be
performed and the system constraints can be satisfied. The flow of information
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within the system is then identified with register transfer specifications, state
diagrams, and any other design aid that can provide insight into the operation of
the system. Finally, the components are identified and the control lines of those
components identified so that the detailed design of the control section can be per-

formed.
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53.

A SimpleState Machine Controller

Once the problem is understood to the point that a detailed data path block
diagram and a preliminary state diagram are available, then the design of the con-
trol section can proceed. The classical approach would begin by creating a
detailed state diagram, then a detailed enumeration of al possible state and input
combinations. This would be trandated into flip-flop excitation tables, state
tables, next state and output truth tables, and logical equationsfor the appropriate
signals. These would then be implemented with random logic, and, if all of the
steps were correctly followed, the circuit should do the necessary control work.
We present here a method that follows the same basic steps as the classical
approach, but that is relatively simple to understand and implement. Firgt, the
state diagram is expanded as necessary to include the appropriate assertion levels
for the control lines of the detailed data path block diagram. Then the system is
mapped directly onto the Moore model of Figure 5.3. The simplicity of the
implementation has some advantages and disadvantages, as we shall see.

A state diagram as shown in Figure 5.7 indicatesthe order in which events
should occur to produce the desired results, but the details necessary for the con-
trol signalsare missing. The designer must be sufficiently familiar with the parts
being used so that the assertion of the control lines will be handled correctly. We
now examine the primitive state diagram and the detailed data path block diagram
in order to derivea correct and complete state diagram.

One observation concerning the state diagram of Figure5.7 is that there are
nine states in it, and to represent all of the states would require 4 bits of state
information. One of the firgt steps of a design procedure is to attempt to reduce
the number of states, if feasible, so that the number of bits required to represent
the state is at @ minimum. Two states in the state diagram appear to be unused,
since no work iscalled out in these states. These states are useful, however, since
they play a part in forming the control signals. Asserting signals in some states
and not in othersresultsin levels and edges that do the actual work of the system.
A designer must visualize the desired behavior of the signals and create state
sequencesto produce that behavior.

In state diagrams we will identify signals to be asserted by naming them in
the states in which they are active. The asserted level of the signdl is identified
by the use of polarized mnemonics included with the signa name. This is
demonstrated by the segment of a state diagram shown in Figure 59. Five dif-
ferent states are indicated in the figure, and the system moves from state to state
without any branching. Each state time correspondsto a single cycle of the sys-
tem clock (SYS_CLK-H). In this fragment of a state diagram a single signal is
caled for in three diffcrent states (C_ADR_CK I:), and in each of those staies it
will be asserted, as shown by the waveform included in the figure. Thissigna is
included on the detailed block diagram of the FIR filter implementatio for clock.
ing (incrementing) the coefficient address register. However, even though this
signal is asserted in three different statesin Figure 5.9, the register would only be
incremented by two. The implementation calls for a ccunter that is activated by a
rising edge on the clock line, and as seen by the waveform of the figure, there are
only two rising edges on C_ADR_CK-H. Thus, a designer must be aware of the
shape of signal waveforms which will result from specifying assertion of the sig-
nas in a state diagram. A signa can be asserted for a single state time
(C_ADR_CK-H in State 2), or a signd can last for many clock cycles
(C_ADR_CK-H in States 4 and 5). We will later examine additional methods for
creating control signals with state machines.
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As shown by the signal waveform of Figure 59, removing the "empty"
statesin the preliminary state diagram would result in an incorrect functionfor the
system. The statescause the signalsthat control the clocking of the addressregis-
ters and the loading of the registers of the DAC to become unasserted, so that the
proper edges are created when the signals are asserted in the following states.
Thus, these states are needed, and another method must be used to try to reduce
the tota number of statesin the state diagram. ,

The observation we now make is that there is some redundancy in the state
diagram: if there is a method of accomplishing“"LOAD PRODUCT INTO Z* and
"ADD PRODUCT INTO Z'" with the same signal, then two of the states can be
combined. A careful examination of the specifications for the multiplied
accumulator indicates that the function of the FCLK pin is determined by the level
of the ACC line at the time that the X and Y registers are loaded. Thus, the
desired behavior of the circuit will be obtained if the ACC lineis low for the load-
ing o the first valuesinto X and Y, and high thereafter. This will alow combin-
ing of the appropriate states from the initial state diagram.

A detailed state diagram can now be created by identifying the desired
behavior from the initial state diagram and specifying the signal assertionswhich

State identifier

Sgnd to be asserted

b sae2 4 saes 4 Saes - Ses - Saes -f
ssown [ [ LT LT L[ 1T

C_ADR_CK-H ] |

Figure59. State Diagram Segment with Sgnd Assartion.
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will now explain in detail the signal assertions identified thece. Two signals
identified in Figure 5.10 are controlled by SET-RESET flip-flops to alow one
behavior in one portion of the state diagram and another in a different portion of
the state diagram. These signals are the S_ADR_LD-L line and the ACC-H line.
The S_ADR_LD-L line is asserted by a signal in State 0 (SET-SA-LD-L) to alow

IDLE
ET_SA_LD-L

NO DATA AVAILABLE DATA AVAILABLE

[_ADR_CK-H
CLR_ACC-L
CLR_SA_LD-L

S_MEML;EIf\\\B

NOT DONE _

IDLE

Figure5.10. Detailed State Diagram for FIR Filter.
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loading of the sample address register when its clock line is asserted in State 1. It
is reset in State 2 (by CLR_SA_LD-L) to alow the address to increment when the
clock line is asserted later. The ACCH lineis cleared in State 2 (by CLR_ACC-L)
to set up the load of the product register. It is set in State 4 (by SET-ACCL) to
alow accumulation of results after the initial product load. We now consider
each of the states, and the signal assertions needed for the process:

e State 0 isthe idle state; the SET_SA_LD-L signadl is asserted to set up conditions
for loading the sample address register, which will be accomplished in State 1.

e State 1 should clear the coefficient addressregister and load the sample address
register from the initial address register. The clear of the coefficient address
register is accomplished by asserting C_ADR_CLR-L. The loading of the sam
ple address register requires that the sample address load line be asserted, and
then the clock line is asserted. The load was asserted in State O; the clock is
asserted in this state.

State 2 causes three things to happen. The S_MEM_WE-L line is asserted to
write the sample into the sample memory (the appropriate address was loaded
in State 1). The initia address register is decremented by asserting
I_ADR_CK-H. And the product load condition is set up by asserting
CLR_ACC-L.

State 3 causes load of the sample (X_CLK-H) and the coefficient (Y_CLK-H)
into the MAC, then increments the two addresses (S_ADR_CK-H, C_ADR_CK-
H).

e State 4 sets up the accumulate condition for the product register in the
multiplier/accumulator chip by asserting SET-ACCL.

o State5 iswhereall of the work is donein steady state. The first time the state
is entered, the assertion of P_CLK-H causes the product register to be loaded
with X x Y. Subsequent assertions of P_CLK-H load the product register with
X x Y + P Samples and coefficients are loaded by asserting X_CLX-H and
Y_CLK-H. The addresses are incremented by asserting S_ADR_CK-H and
C_ADR_CK-H. The net result is that values are loaded and addresses incre-
mented to look at the next values. The use of positive edge triggered devices
assures that the current values are loaded before they change; the change will
occur some time later because of propagation delays in the address registers
and the memories themselves.

¢ State6 causesthe output register to be filled by asserting OUT_CLK-H.

When the state numbers have been assigned to the state diagram, we are
ready to map the controller onto the Moore machine. We will do this as shown in
Figure5.11. The present state register holds the current state of the system. The
next state logic looks at the present state and the inputs and selects the next state.
As shown in the figure, the logic blocks in the next state logic are multiplexers;
the inputs to the multiplexers are chosen to select the correct next state from the
current state. So the outputs of the multiplexers can be specified as shown in
Table 5.1. The two signals included in the table have not yet been identified.
The first is DATA-H, which is a flag from the A/D converter identifying that we
have new datato process. A possiblearrangement for this flag is shown in Figure
5.12(a). Herethe end of conversion signa from the A/D converter causes a flip-
flop to be set; the flip-flop is cleared by the same signal that clears the coefficient
address. The second signal is DONE-H, which is asserted when the required
number of iterations have been completed. We could create a new counter for
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Table 51 Nedt State Multiplexer Specifications.

MUX 2 MUX | MUX 0
Sate 0 0 0 DATA-H
Sael 0 1 0
Sate 2 0 1 1
Sae 3 | 0 0
Sate4 1 0 1
Sae5 1 DONE-H 0
Sae6 0 0 0

this, but that counter would duplicate the numbers used as the coefficient
addresses. Therefore, Figure 5.12(b) shows a°comparator connected to generate a
DONE: Hsignal using the numbers available from the coefficient address.

The entries in Table 5.1 specify the inputs needed for the multiplexers for
the state machine. The resulting circuit is shown in Figure 5.13. Figure 5.13(a)
shows the present state register and the next state circuitry; Figure 5.13(b) shows
the decode of the present stete register to generate the necessary control signals.

Several observations should be made at this point. The first is that the
method described above is simple and direct, and easily applicable to state
machines with up to 32-states. Larger state machines have been constructed using
this method, but the number of parts involved becomes unwieldy. The smplicity
of the technique alows idess to be tested quickly; changes are easily made by
moving a few wires on the inputs of the multiplexers. The basic feedback
mechanism need not be disturbed. This ease of modification allows the circuit to
be quickly changed to conform to the needs of the system. This basic system
allows different design ideas to be implemented and and tried with @ minimal
investment of time and effort.

One of the tasks required when the implementation has been completed is to
check out the system to verify that the unit functions correctly and that the signals
are controlled in an appropriate manner. The checkout process must identify and
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Figure512. Contral Signdsfor the State Machine

remedy any errors which cause improper assertion sequences for the control sig-
nas. Generdly errors will fall into one of two categories: either the system has
wiring errors and the behavior does not follow the state diagram, or the imple-
mentation is correct but the state diagram is flawed because the designer did not
thoroughly understand the system requirements. In either of these cases,
modifications to a system designed in the method described above can be made
easily, and the system can then be completed.

A second observation concerns the synchronizationof input signals with the
state machine. Figure 5.13(a) shows that the DATA-H signal is not directly fed
into the multiplexers, but that it is first synchronized with the system by sending it
through a buffer register that is clocked with the system clock. In the example,
the buffer register is the same device used as the present state register, since the
device is not entirely utilized. But what is required is keeping the input synchro-
nous with the system clock. If this provision is not made, then the inputs may
change in a manner such that, when the system clock does occur, that the next
state is changing and the result is an illega state transition. If the inputs are not
synchronized, the system will fail when changes on the input lines occur at the
same time that the present state register is being clocked. Note also that the
DONE-H signal is not buffered by a register. The reason for thisis that the DONE
signa changes synchronoudly with the system clock, and hence does not need the
effect of theregister.

Another observation deals with the generation of the output signals. As
shown in Figure 5.13(b), the present state is decoded to generate the appropriate
signals for the systiem. Generally our concept is that as the system proceeds
through the states identified by the state diagram, the lines of the decoder will
become asserted at precisely the right time. However, since real devices contain
real delays, and the delays can cause glitches, provisions must be made for the
correct operation of the system. If the signals being activated are level sensitive,
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Figure 5.13(a). Present and Next State Logic for Control System.

then a glitch will not cause problems. However, if the signalsare edge sensitive,
asall of the clocksin our exampleare, then glitcheson the control lines can cause
problems. Figure5.14(a) shows a decoder set up to demonstratc a number of pos-
sible combinations.

The problem of glitches on output lines is illustrated in Figure 5.14. The
control line which is used in different ways in the example is the enable line of
the decoder. If the decoder behavesas a perfect decoder, and no glitches occur on
the output lines, then behavior similar to the waveform of Figure 5.7 can be
obtained by always enabling the decoder. Figure 5.14(b) shows the results when
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the enable line is always asserted: glitches occur on the output lines of the
decoders. In Figure 5.14(c) the enable has been tied to SYSTEM-CLOCK-H. The
result is that the appropriate decoder output will be asserted only during the time
that the system clock is low, which is the last hdf of the cycle. As can be seen
from the figure, the assertion occurs hdf way through the cycle. This is the
method utilized in the finite impulse response filter example. This is the reason
that the ACCH and S_ADR_LD-L lines are driven from flip-flops, since the
decoder outputs are only asserted for hdf of thecycle.

The success of obtaining the last hdf of the cycle may prompt one to
attempt to obtain the first haf of the cycle by using the other phase of the clock.
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Figures.14(a). Test Setup for Usng State Decoder.
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Fi gure 5.14(c). Waveform for Decoder with Engble Tied to
SYSTEM_CLOCK-H.

The resultis shown in Figure 5.14(d), which indicates that unwanted pulses occur;
thisisa result of the propagationdelay from clock assertion to changeof decoder
output. As can be seen from the waveforms of Figure 5.14, a number of options
are available to a designer, and the merits of each option must be considered
before selecting a design method.

The FIR filter example demonstrates some of the basic principles of con-
holler design. It is imperative tha the designer first understand the system
specifications; this includes aspects often neglected, such as the implications of
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the arithmetic methods, number of bits on the data path, and interaction protocols.
The designer then generates a data path block diagram, an RTL description of the
desired system behavior, and a preliminary state diagram. These tools assure the
designer that the system specifications will be satisfied, and that the necessary
data transfers can be made. When the block diagram is defined, the control sig-
nals of the components of the system are identified and labeled with appropriate
polarized mnemonics. The state diagram can now be refined to specify the asser-
tion of the control signals that will cause the desired work to be accomplished.
The dtate diagram can then be mapped onto the Moore model to provide a work-
ing control system. The result is a system that will activate the control signalsin
the proper sequence to achieve the necessary results.

The state diagram approach is easy to understand, and it is also fairly easy
to implement for small systems. We have shown the next state decode logic to be
multiplexers; classical methods dictate the use of random logic. Manufacturers
now provide registered PLAs (programmablelogic arrays) that allow the designer
to put both the present state register and the next state logic inside a single chip,
which is then programmed to follow some specified state diagram. Outputs are
handled in much the same way. One use of these controllerswill be used in Sec-
tion 5.6. However, historicaly other methods have been applied to the control
systems of computers. We now fook at some of these methods.

5.4. Sequential Systems with Individual Delays

As we have seen, the first step in any control design is to derive a block diagram
that meets the system specifications, and then to identify on that block diagram
the control lines needed. In this section we will look at an extremely simple com-
puter, and use that machine to exemplify the delay method of sequential control
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systems. The principles here are similar to those used in the state machine control
of the previous section, but the application methods are dlightly different. Rather
than have the state of a system stored in a single register, and the state changes
reflected by changes in the state number, the action of the delay type system is
governed by acontrol pulse that traverses the elements of the control system.

The techniquedf individual delays described here has been used in the past
for a number of computer systems, but is not widely used in new systems. How-
ever, in some systems constructed entirely within an integrated circuit chip, delay
lines play a prominent part in generating control signals.

The block diagram for our example is given in Figure 5.15. The diagram
shows a simple single address machine, with enough detail represented to illus-
trate the principlesof this section. The diagram does not by any means represent a
complete system, since a diagram of that complexity would be overwhelming.
The data paths are patterned after some of the first computers: the connections arc
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Figure515. Block Diagram for a Simple Computer
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basicaly point to point rather then bused. Note that the data paths are not com-
plete, as exemplified by the fact thet there is no path to the program counter.

The desired behavior for this example is to implement three simple instruc-
tions: ADD, SUBTRACT, and AND. All three of these instructions require two
operands. Since this is a single address machine, one operand is found in the
accumulator, and the other is found in memory at a location specified by the
instruction. The task required of the control section is to cause the requested
action on the data and leave the result in the accumulator.

As in the previous example, the first task is to create a suitable data path
block diagram, which was given as part of the definition of the example. The
designer then must arrange for the required action, utilizing the capabilitiesof the
data path hardware. The hardware capabilitiesof this example include:

s Program counter: The content of this register identifies a location in memory
where the instruction to be executed can be found. The processof instruction
execution should increment this register to point at the next instruction. This
can be accomplished by asserting PC_INC-H.

¢ Memory address register: This register holds an address to identify a location
in the memory.

MAR multiplexer: The multiplexer selects the source of information for the
MAR. Normal operation is for the PC to be output to the MAR However,
when MBR_MAR-H is asserted, the addressis obtained from the memory buffer
register.

e Memory: The memory will provide to the memory buffer register the contents
of the address specified by the memory address register within some specified
delay. For thisexamplewe will assumethat the delay is 200 nsec.

Memory buffer register: For destructive readout memory technologies this
register remembers the data just read so that it can be restored to the memory.
In general, modem semiconductor memories do not need this capability.

ALU multiplexer: This device selects the BIN operand of the arithmetic/logic
unit. Normal operation selects the contents of the memory buffer register;
when BUF_ALU-H is asserted, the ALU receivesthe contents of the buffer regis-
ter.

o Buffer register: This register is used for internal operations that need a tem-
porary storage location. It is not visibleto assembly level programmers.
Accumulator: Thisis the known register of the machine. All instructions that
manipulate data will find information in this register, and instructionsthat pro-
duce data results will leave their information in this register.

Arithmeticllogic unit: This functiona unit is capable of some rudimentary
actions, as specified by the following table:

ALU _FUN OUT Function

0 0 Bitwise AND of AIN, BIN
0 1 Bitwise OR of AIN, BIN

1 0 Inverse of BIN

[ 1 Binay ADDof AIN. BIN

This ALU has the characteristicthat logica operations{ AND, OR, INVERT) take
40 nsec to complete; the arithmetic operation (ADD) takes 80 nsec to complete.
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e Instruction register: Thisregister is used to hold the instruction during its exe-
cution.

* Instruction decode: The decode circuitry identifies the type of instruction to be
performed. In this example there are only three, but generally there will be
many ingtructions. The appropriate output line will be asserted to identify
which of the instructionshas been decoded.

In addition to the times specified for the ALU and memory functions, we will
assume that register to register transfersrequire 40 nsec.

The designer utilizes knowledge of the data path connectionsand the capa-
bilities of the components used on the data path to specify the required action of
the control system. The first step is to identify the required register transfers, and
for this example these transfers are given in RTL form in Table 5.2. The table
specifies the order in which the transfersare to be accomplished. Our task is now
to take these transfers and implement them in hardware. The firgt step in this pro-
cessis to generatea flow chart that identifies the required steps. The flow chart
for these three instructionsis given in Figure 5.16. Note that the flow chart
identifies the signd assertions required to accomplish the transfers specified by
Table 5.2, as well as the delays necessary between the assertion o :hose signals.
Also note that there is a one to one correspondence between the operations
identified in Table 5.2 and the operations caused by the signa assertionsidentified
in the flow chart.

To illustrate the process of instruction execution, we will examine the sub-
tract instruction. A timing diagram showing the control lines involved in this
instruction is shown in Figure 5.17. The process begins by transferring the
address of the instruction from the program counter into the memory address
register with MAR-LD-H. Note that the multiplexer normally supplies this infor-
mation to the MAR, so no action is required on the control lines of the multi-
plexer. The memory has a 200 nsec delay, so the MBR_LD-H signd is delayed by
that amount after loading the MAR. The program counter is also incremented at
the same time. The instruction register is loaded from the MBR 40 nsec |ater,
since 40 nsec is required for register transfers; after a period of time for instruc-
tion decode, the MBR_MAR line is asserted so that the MAR recelvesits informa-
tion from the MBR. A delay time later the MAR-LD-H line is asserted again,
loading the address of the operand required for the operation. After the memory

Table52 Regiser Trandfersfor Three Indructions.
Register Transfers for Example

AND Instruction ADD Instruction SUBTRACT Instruction

PC - MAR PC - MAR PC — MAR

M[{MAR} — MBR MIMAR] — MBR M([MAR] — MBR
PC+1]:PC PC+1]:PC PC+1 PC
MBR R MBR IR MBR IR

MBR - MAR MBR — MAR MBR — MAR

M[MAR] — MBR M[MAR] — MBR M[MAR] - MBR

MBR ¢ ACC - ACC MBR T ACC — ACC — MBR — BUF

BUF +ACCt+1 - ACC
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Figure 5.16(a). Row Chart for Dday Implementation of Three Indructions.

delay the MBR is loaded and the MBR_MAR-H line reset. Since the subtraction
method specified calls for inversion of the MBR, the ALU_FUN(1)-H line is set
high to present to the input of the buffer register the inverse of the MBR. This
information is then loaded into the buffer register, and the ALU prepared for an
addition operation. By also forcing the carry input to bea*l,” the find operation
is the desired subtraction, and after the required delay the ACC_LD-H line is
asserted to load the information into the accumulator. Thefetch-execute cycle
then repeatsitself, beginning with the assertion of the MARLD-H signal.

The flow diagram and timing diagram together specify the action to occur
and the timing relationship between control signals. The individua delay method
of sequencer design consistsof directly implementing the flow diagram with delay
edements. A delay element consists of either a semiconductor device or an analog
equivaent that will accept a signal, usualy a pulse, and delay the signal by a
preset amount. In this example we need delays of 40 nsec for the register
accesses — 80 nsec. 120 nsec. and 200 nsec. With these available. a designer
matches the flow diagram with timing elements, and then uses logic gates and
flip-flops to create the appropriate control signals. The delay elements for this
example are shown in Figure 5.18(a), and the additional logic required is shown
in Figure 5.18(b) and Figure 5.18(c).

The system would begin action by injecting into the delay network a single
pulse & RUN-H. This would assert START-H, which in tum asserts MAR-LD-H.
After adelay of 200 nsec, I_FETCHED-H is asserted. This causes the assartion of
both PC-INC-H and MBR_LD-H. Another delay element is used to place the
required time between the load of the MBR and the assertion of IR_LLOAD-H. The
AND gates then direct the pulse down the appropriate set of delays, depending on
the instruction decoded. And so the process continues, with the pulse traversing
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Figure5.16(b). (con!) How Chart for Delay Implementationd Three Ingructions.

the delay network and doing work as required. The control signals are created by
tapping the appropriate spots in the delay network, as specified by the flow
diagram. For example, ACC_LD-H is created by ORing the signals from the AND.
ADD, or SUB delay sections together. For signals that need to remain set for
lengths of time, the flip-flop arrangement shown for MAR_MBR-H can be used.
The sgnal is set when it is first needed, and then reset when it is no longer
needed. This allows both pulsesand levelsto be used in the system.

The preceding example has shown that systems can be designed in a
straightforward manner using delay elements and gates to cause the appropriate
action. The data path block diagram identifies the control points that need to be
activated, and the flow diagram and timing diagram specify the actionsand delays
to take place to accomplish the appropriate tasks. This example can easily be
extrapolated to include other ingtructions: the flow diagram will require additional
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Figure 5.18(a). Dday ElementsNeeded for Smple Machine

branchesin the decode section, and additional register transfer level specifications
will identify the work required for arithmetic or procedural instructions. For
example, not all instructions will require action from the ALU, and other data
paths will be required for jumpsand other activity.

This method of design has an advantagein that the control can be tuned to
provide the fastest action possible. That is, if it is known that the ALU will do an
AND action in 38 nsec, then the 38 nsec delay can be placed in the appropriate
spot in the system, and the AND instruction will take 2 nsec less than an OR
instruction. But offsetting the speed advantages are some of the practica prob-
lems. The fidelity of the pulse as it travels through the system must be carefully
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maintained, and this can cause additiona problems. The system must be carefully
designed to prevent spurious pulses from entering the network; an interesting error
mode is when two pulses are traversing the system simultaneously.

This method alows a sraightforward combination of data path block
diagram, flow diagram, and timing information to result in a tunable, high perfor-
mance control system. The control system provides both pulse and level capabili-
ties, and can be easily modified either by changing the delays or by including
other pointsin the delay network in the creation of control signals. Many of these
characteristicsare also evident in the shift register method of control design.

Sequential Systems Using Shift Register Timing

The concepts of the shift register timing method for control design follow closely
those of the individua delay method. The data path block diagram is used to
identify the control signals, the flow diagram identifies the register transfers and
other work that need to be done, and the timing diagram specifies the interaction
of the control signals required to accomplish the work. However, the timing
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Figure5.18(c). (cont) Cregtion of Control Signasfor Dday Method.

diagram must now represent events that occur at multiples of the system clock.
That is, the delays of a flow chart such as Figure 5.16 must all be multiples of the
system clock. The preceding example was chosen so that al of the delays were
multiples of 40 nsec — so that will be the assumed system clock ratefor this sec-
tion. The concept for the shift register method is to identify the work to be done,
and then to create the proper waveforms by using gates to harness a pulse
proceeding down a shift register.

The creation of the timing action is accomplished by the action of a shift
register. One such arrangementis shown in Figure5.19. The desired pulse action
is initigted by asserting START-PULSEL. On the next clock pulse the signa
PULSE_0-H will be asserted. If a pulse duration of one cycle is desired, the
STOP-PULSEL control line can be created by inverting PULSE_0-H. Thereafter,
on each leading edge of the system clock the pulse*'moves” down the shift regis-
ter. The resulting pattern is shown in Figure 5.20, called Method One. The
pulses depicted for Method One form a precise timing capability for the system.
If an event is to occur 80 nsec after initiation of the instruction, then PULSE_2-H
can be used to cause the event. However, if a control line needsto be asserted for
more than one clock period, then more than one time period is needed. That is, if
a sgnal is to be asserted from 80 to 160 nsec after initiation of the instruction,
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Figure519. Puse Credtion with Shift Registers.

then the signal can be created by ORing PULSE-2-H and PULSE-3H. This will
indeed resultin asignal of duration 80 nsec; however, there may be aglitchin the
signal caused by the timing difference of deasserting PULSE-2H and asserting
PULSE-3H.

One way to get around the problem of glitcheson the control lines is to use
set-reset flip-flops as we did with the delay line method. Another solution to the
problem is to use overlapping pulses, as shown in Method Two of Figure 5.20.
Pulses with a length of two system clock periods can easily be created by using
the inverse of PULSE-I-H to be STOP-PULSEL. When these signals are ORed
together, the resulting signal is free of glitches caused by the hazards associated
with pulse assertion.

The similarities between this method and the individual delay method are
apparent from the approaches both take in implementing the control signals. The
principal difference is that one method uses individual delays and a pulse that
traverses a control network to accomplish work, while the other method achieves
the correct timing relationships by the use of measured delays in a shift register.
Both methodscreate the control signals by gating appropriate delayed values with
the necessary enable conditions. The result is a system that asserts the control
signals needed to accomplish the necessary work.

An exampleof gating for the shift register method for the system of the pre-
vious section is given in Figure 5.21. The gates shown are derived directly from
the timing and flow diagrams. The MAR-LD-H signal is aways asserted at
PULSE-O time, or it is asserted at PULSE-10 if the instructionis an AND. ADD. or
SUBtract ingtruction. For thisexample, this is the entire collection of instructions.
so the AND and CR gates are superfluous. However, if a number of other instruc-
tions were included in the system, then the gates would be needed. The PC_INC-
H ingtruction always occurs at PULSE-6 time, S0 no additional gating is needed.
The ALU_FUN(1)-H signal is asserted during PULSE-16. PULSE-17. or PULSE-18.
if the instruction is an ADD instruction, or during PULSE-16. PULSE-17,
PULSE-IS PULSE-19, or PULSE-0. if the instruction is a SUBtract instruction. It
is not asserted during an AND instruction. The other control signalsare createdin
a similar fashion. Note that the STOP-PULSE-L signal occurs at PULSE-1 time,
resulting in overlapped pulse operation. Also note that the START-PULSEL
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Figure 520. Timing Diagrams for the Shift Register Method.

signal occursat different timesfor the different instructions, and thet initialization
comes from some external circuitry.

Both the delay method and the shift register method provide straightforward
approachesof building control circuitry, mapping the information from the flow
and timing diagrams directly into hardware. Both methods alow the designer
flexibility to implement the necessary signals to match the congtraints of
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Figure $.21(a)., Control Signa Generation with the Shift Register
Method.

technology and application. And both methods have interesting error modes when
more than one signal enters the delay network/shift register. Nonetheless, both of
these methods have been utilized in the design of many types of digital equip-
ment. However, perhaps the most extensively utilized control design method in
recent years is microcode.

Microcode Controllers: A Regular Control Structure

In 1951 Wilkes presented a paper in which he suggested that the design of control
systems was entirely too complicated. He went on to suggest that the process
Lo .y simplified by the use of a regnlar method for making decisions
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Figure5.21(b). (cont) Control Signd Generation with the Shift Register
Method.

concerning the next thing to do and what control signals to assert. The heart of
this method was a high speed memory element needed to remember the appropri-
ate sequence of information. However, a that time the memory technology was
not as fast as random logic, nor as readily available. Hence, for many years
Wilkes' suggestions went unheeded. Instead, designers utilized classical tech-
niques, as well as the delay line and shift register methods, to implement sequen-
tial controllers. However, in the mid-1960s memory technology advanced to the
point that it was an attractivealternativeto use high speed memory to govern the
action of a control system. We will introduce the method by taking another look
a state machine control, and transfer the state machine ideas to the use of micro-
code.

We begin our examination of memory-based control methods by reorganiz-
ing the bl ock diagram of Figure 5.15. The same basic components are utilized,
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but the organization is changed. The reason for changing the block diagram will
become apparent as we discuss the implementation methods of this section. The
main organizational changeis the inclusion of a single data path that is utilized by
al o the components. This single bus organization is very useful in systems
where universal communication is desirable. Each component can transfer infor-
mation to any other component; however, only one value can be transferred in a
clock period. The component required to accomplish this is a bus driver, which
isolatesthe register outputs from the bus except when the information in that par-
ticular register is required. At that time, the bus driver is enabled and information
from the registeris made available to the other eementson the bus.

Transferring the contents of the program counter to the memory address
register is achieved by asserting PC_BUS-L to place the contentsof the program
counter on the bus, and then after a time required for propagation delay, settling
time, and setup time, MAR_LD-H is asserted to load the information into the MAR.
One method of implementationis to make the various registersfrom simple regis-
ter devices such as the '273, and the drivers from tri-state drivers, such as '244.
For situations where the data is not necessary except to drive the bus, such as the
buffer register, it is possible to obtain both register and driver in a single package,
such as the '574. However, not al registerscan take advantageof this capability,
since the output of the accumulator is alwaysneeded at AIN of the ALU, and the
valuein the memory addressregister is required at the memory.

As with the other control implementations, our first requirement is a com-
plete data path block diagram. with control pointsidentified. Thisisgiven in Fig-
ure 522. We can now generate a state diagram that identifies the assertions
required in order to accomplish the desired results. These results have aready
been identified by the flow chart given in Figure5.16; wecan now: generate a state
diagram to do the same work. One such state diagram is given in Figure 5.23.
This gtate diagram illustratessome interesting points, and represents a fairly con-
servative approach to system design. Let us consider the methods illustrated by
Figure 5.23, and then consider some alternatives.

The method used for transferring information across the bus is illustratedin
the firgt two states, which cause the MAR to be loaded with the contents of the PC.
In State A the signal PC_BUS-L is asserted, which causes the contentsof the pro-
gram counter to be placed on the bus. This same signal is asserted in State B,
which guaranteesthat the value will be present during that state also. The loading
of the MAR is caused by the assertion of MAR_LD-H in State B; this signal causes
the register to accept the information while the bus is held steady by the PC-BUS
line. The relationship between these signalsis shown in Figure 5.24. The method
described in the state diagram, and shown pictorialy in Figure 5.24, requires two
states, and guarantees that the data is loaded into the MAR at the beginning of
StateB. The same work can be accomplished by generating both the MAR signal
and the PC_BUS signa simultaneously, as shown in the dternative method. The
key to success of this method is that the register is loaded on the rising edge of
the MAR-LD line. Thus, for the duration of State X the PC_BUS signal is causing
the data to be placed on the bus, and sufficient timeis alotted for the delay in that
process, as well as the setup time on the inputs to the MAR. Then when the low-
to-high edge occurson the MAR-LD line at the end of the state, the data available
is loaded into the register. For most logic families(LS, ALS, AS, etc.), the delay
in turning off the driver is sufficient to guarantee that the data is stable long
enough to be correctly loaded into the MAR. This alternative method requires
only one state to transfer the information, instead of the two states shown for
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Figure 5.23. State Diagram for Single Bus Processor.
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Figure 5.23. One caution with this method of information transfer is thet the
designer must ascertain that the data has been stable in the loaded register for a
sufficiently long period to guarantee desired results for the next operatian. That
is. the propagation delay, from clock assertion to data available, must be

accounted for in any subsequent data manipulation.

This method is applicable to registers and other edge-triggered devices
whose clock lines are driven directly from signals generated by the state machine.
Another method to achieve this result is to use devices with separate clock and
enablelines. One such deviceis the 74F550, shown in Figure 5.25. This register
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Clock data from B lines to internal register
Clear Flag to A line
Clear Flag to B line

Qutput data frominternal register to A lines
Qutput data from internal register to B lines
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Figure5.25. Regigter with Separate Clock and EndbleLines.
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has aclock enablecontrol line, which controlsthe effect of the clock. This allows
the clock line to be connected directly to the system clock, and then the line that
needs to be asserted by the control section is the enable line. Thisis particularly
useful for systems in which all events are to happen at precisely the same time,
and that time isdefined by therising edge of the system clock. A number of dev-
ices utilize this strategy for their operation, including registers (2950, 2952, '550,
etc), arithmetic units (2903), and controllers.

Another example of the separate clock/enable function is demonstrated by
the use of countersin this system. The 200 nsec delay required by the memory is
obtained by waiting for five state times before proceeding. This wait time is
governed by a counter similar to those used in the example of Section5.2. The
control design used in that section caused control signals (specifically,clock lines
of counters) to be asserted when the action was needed. Another method to
achieve the same result is t0 use couaters which will increment only when
enabled, even though a clock signal is present at the clock input. The counters
will increment only when the enable line is asserted, and the enable line is con-
trolled by the state machine. This is the method which is illustrated in State B
and State C of Figure 5.23. The counter is cleared in State B, and then State C
callsfor incrementing the counter. This cannot be accomplished if the clock sig-
nal is fed directly from the decode of the state, since the state does not change.
(As pointed out earlier, ANDing the clock signal with the system clock would
result in a pulsating clock line) However, if the State C signal is utilized to
enable a counter, then the desired result is obtained. For the '161 of Section 5.2,
the action can be obtained by using a signa generated in State C to assert the
EnablePline of the counters.

Other delaysare implemented by repeating the action of one state in another
state. The 40, 80 and 120 nsec delayscan be obtained by using one, two, or three
dates. Thus, delays can either be obtained by staying in one state for a predeter-
mined number of system clock times, or by using multiple states, assuring that the
required signalsare asserted within those states.

The state diagram of Figure 5.23 is specifically constructed to follow the
flow diagram of Figure 516. No attempt has been made to try to save on the
number of statesutilized. An examinationdf the state diagram reveals that there
are some duplications, specifically in the area of obtaining the operand of the
ingtruction. One method of reducing the number of states would be to delay
decoding of the instruction until the operand has been obtained. This resultsin a
system that partidly decodes instructions at appropriate times to attempt to
minimize the number of states. For example, the system under consideration
aways requires an operand for each instruction, but in a rea system ingtructions
such as "increment' or "'clear"" affect only the accumulator, and do not need to
obtain another operand. Thus, the organization of the system hardware, the com-
plexity of the instruction set, and the goals of the system all influence the designer
in the creation of the state diagram that describes the control algorithms of the
system.

Using classicad methods, or those described in Section 5.2, we can imple-
ment a control section that operates as described by the state diagram of Figure
5.23. A block diagram of such an implementationis shown in Figure 5.26. The
current state of the system is stored in a register labeled "' Present State Register.”
The next state logic uses the current state, the instruction, and the start signal to
select the appropriate next state. In the direct implementation method of Section
5.2, this logic consists of multiplexers and perhaps some minimal logic. With
classica methods, this would be some type of random logic implementation.
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Figure526. Block Diagram o State Machine Controller for Smple Computer.

Regardless of the implementation method, every clock period a new determination
is made as to the next state, and if the implementation is correct, the state diagram
of Figure 5.23 will be followed. The control signals are generated by decoding
the present state; these signals may or may nat include the system clock in their
implementation. The following observation can be made concerning the control
signal generation: the signals asserted at any given time are functionsonly of the
present state (and clock), and the signals to be asserted in any given state are
determined during the design process. Since the signal assertions are set up at
design time, the same information used to sdlect the appropriate next state
(present state and inputs) can also be usad to determine the signals that will be
asserted at that time. Therefore, during the same period that the next state is
determined, the appropriate signal assertions for that state can also be determined.
This leadsto the implementationshown in Figure5.27.

The block diagram of a system controller as shown in Figure 5.27 is
extremely smple. The next state logic determines the state to which the system
will proceed from the present state, based on the present state and the external
inputs. At the same time, this same information will be used by the next state
contral logic block to determine the control signalsto be asserted in the next state.
As stated earlier, this informationis available at design time, and will not change
during the useful life of the product. Both the state infonnation and the control
lines will be held in registers, so that transitions on control signals will occur at
the sametime that the state changes. If it is deemed desirable to do so, some con-
trol signals can be conditioned with the clock to create appropriate timing pul ses.
This arrangement eliminates the use of a present state decoder for generation of
control signals, since al of the signal generation is determined prior to the active
edgeof the clock.

The logic utilized by a system for the next state logic and next state con-
trol logic blocks can be created by any appropriate meansopen to a designer. But
it is instructive to note that it need not be random logic nor the multiplexer
arrangement presented earlier. Some manufacturers build devices specifically
designed to do this function, and they provide means to create the appropriate
logic, depending on the mechanism used for implementation of the device. Figure
5.28 shows a block diagram representation of the 825105, which is called a"*Field
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Figure 5.28. Internd Makeup df a Feld Programmable Logic Sequencer

Programmable Logic Sequencer.” This device allows 16 external inputs; in addi-
tion there is a reset/output enable line (function is defined at time of program-
ming). The device has eight outputs, al of which are registered so that the
outputs will change only after a clock transition. Interna to the device are six
feedback lines; this allows creation of a state machine with up to 64 states. The
determination of the next state and the output levels is accomplished by a pro-
grammable AND/OR array; the limitation is that the device is capable of only 48
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AND terms and 14 OR terms. This places some limits to the complexity of the
state machines that can be implemented by the device, but a variety of very useful
controllersis feasible. A large number of similar devicescan be utilized to imple-
ment sequencers, such as registered PALs, state machine controllers, and
registered PLAs.

One "feature” of this type of unit is that the feedback variables are internal
to the device. This is a benefit in that the speed is not hampered by going off
chip, which leads to ahigher clock rate. Note that the inputs will need to be syn-
chronized to the system in some way. The drawback to this feature is that the
state variables are not available to the user to ad in the debug process. Thus, the
only way to ascertain the state of the machine is to observe the output pins. The
designer must be careful about his assumptions concerning the correctnessof the
machine during checkout. Nevertheless, programming aids. available from both
manufacturersand third party vendors, greatly enhanc= the ability of the designer
to create a correct system.

As aresult of making state machine devices compact and easy to generate,
many of the designs utilized in recent digital systemsare created with a number of
individual state machines. In these systems, each state machine is a single IC
created to perform its own task, and the units function together to control the sys-
tem. Thus, rather than have a single controller to control al of the action of the
system, the control is divided between smaller units, and these units each activate
a subset of the control lines. An example of this is described in Section 6.5,
where one state machine controls the action of an interface module, while dif-
ferent state machinecontrols the signals used to interfaceto the bus.

The use of logic arraysfor the next state and output generation allows crea-
tion of a variety of useful devices, but does not permit arbitrarily complex sys-
tems. Also, since the feedback is internal to the device, the number of-outputs is
limited to fhose available from that chip. One way to expand the use of this tech-
nique is to use memory instead of AND/OR arrays for the logic blocks. That is, if
we consider the correct next state/output information as a pattern of ones and
zeros stored in @ memory, and the addressof the correct pattern is formed by the
feedback variables and inputs, then all combinationsof states and input variables
are possible. The memory utilized in this arrangement can be ROM or FROM, and
the number of input variables and feedback variables can be increased by adding
more memory chips. For example, one such device is the 27855, a FROM with
eight registered outputs and 4,096 locations, which requires 12 address lines.
Three of these devicesclocked together would give 24 outputs, and these could be
used in any combination required by a design. A system implementing the state
diagram of Figure 5.23 would reguire six feedback variables; these would form
sx of the 12 addresslines on each device. That allowssix other lines to be used
for the start signal and instruction lines, as well as any other inputs required in the
system. The 24 outputs would then be utilized for six feedback variablesand 18
control lines; we haveidentified 16 linesin the block diagram of Figure5.22.

This arrangement has severa practica advantages. The controller is com-
pletely contained in three 24 pin devices, requiring about 1.4 square inches of
board space. The fact that it is programmable allows a designer to try different
state diagrams or implementation idess by merely changing the devices, nat phy-
sically changing any wires. The net result is a very versatile system controller of
arbitrary complexity. No limitations have been made concerning the complexity
of the state diagram, nor concerning the number of states in which control signals
can be asserted.
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At this point we will pause in our discussion of control system construction
to identify a technique that can be beneficid in the checkout and maintenance of
sequential machines. One basic mode for a sequential system was given in Fig-
ure 5.2, and this basic modd is reflected in the diagram of the sequencer shownin
Figure 5.28. One of the basic problems facing system designers is the checkout
of equipment that has been constructed. For simple designs made from individual
gates, or for any system in which accessto major system componentsis readily
available, a brute force method of checkout is often utilized. With this method.
the outputs of the system are observed under the necessary conditionsof input and
history to check for correctness. If improper behavior of output signds is
observed, then the logic required to generatethose signals i s meticul ously checked
for correcmess. The problem may lie in improper implementation of the logic, or
the problem may concern an improper design based on flawed assumptions about
the problem to be solved and the available inputs. Thus, not only the logic net-
work, but also the design of the logic, must be checked for errors.

If the system to be checked is a sequentia IC, such as that shown in Fignre
5.28, then it is difficult, if not impossible, to test the actua logic. Access is
needed for controllability and observability: we need to control the inputs to the
system, and we need to be able to observe the outputs of the system. Control
over the external inputs of Figure 5.28 is easily obtained, but control over the
feedback variables is not readily available, since they exist solely internal to the
device. Similarly, the outputs of the chip can be readily observed, but the con-
tents of the internal state register is not available to the external to the device.
One of the techniques usad to provide both controllability and observability is
caled the scan technique, which is used to provide access to the internal registers
of asvatem.

The basic idea of the scan technique is to provide a method for controlling
and observing the contentsof the registersinternal to a system. Rather than pro-
viding additional pins for al of the desired points, the interna registers are
configured as either a norma register or as a shift register. In normal operation,
the registers behave as we have discussed to this point: at the active edge of the
clock, the register is loaded with either the output information or the next state
information. In diagnostic mode, the registers are reconfigured as a single serial
shift register, and activating the clock shifts out the bits in a serial fashion. Thus,
al o the internal register bits can be observed. Similarly, as the bits are shifted
out, new bits can be input to the system to alow external control of the levels
inside the device.

The gpplication of the idea requires some modifications to asystem. Thisis
indicated by modifying the organization of the device shown in Figure 5.28 to
include the elements shown in Figure 529. The additional lines required are
minimal: a control line to normal or diagnostic operation, a serial input, and a
seria output. A good descriptionof the technique and its application is available
in {McCi86). Some manufacturers provide integrated circuits with this capability
built into the register elements. Advanced Micro Devices refers the additional
registers in their devices as "'shadow registers,” but the idea remains the same:
provide ability to control and observe needed points in a system [see AMDSS,
Lee87, and Schm87]. This need not apply only to integrated circuits, but can be
used in any sequential module. IBM utilizes this technique in a number of sys-
tems, whereit is known as level sensitivescan design (LSSD) [TeSw82].

The state machines implemented to this point have been created to match a
timing constraint given in the problem statement. One of the questions to be
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addressed concernsthe speed of a state machine: how fast can it run, or how fast
should it run? These two questions, in general. have different answers. One
answer comes from the speed a which the controller can operate. The other
answer comes from the speed at which the elements of the data path can operate.

All of the examples included in this chapter use edge-triggered registers, in
which the outputs change to coincide with the valuesat the inputs when the active
edge of the clock occurs. Thus, the timing requirements of the system must
satisfy the constraints of edge triggered devices. Another design approach is to
use devices that operate on a latching principle, in which the level of the outputs
(of the latch) follow the level of the inputs so long as the clock (or enable) of the
latch is asserted. A description of the differencesin designing with edge-triggered
devicesand latched devicesis found in Section 7.2.

A state machine controller of the type shown in Figure 5.27 consists of-a
reglsler and some logic 10 generation of control signals and next staie determina-
tion. The minimum cycle time Tfor the system clock (SYSTEM_CLOCK-H) must
include times sufficient for each of these functions. This time can be broken
down into three basic components, as shown in Figure 5.30. When the active
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Chap. 5: Control System Deslgn 237



edge of the clock occurs, there is a propagation delay time (t,g) after which sig-
nals become asserted, both in the present state register and in the signals that
cause work in the data path. Once the present state is stable (and also the register
holding the synchronized inputs), there is a time required for the choice of a next
state to become stable. This is labeled in the figure as tqg, but the decision
could be made by random logic, PLAs, or memory. Whatever mechanism is util-
ized to determinethe next state and the correct levels for the control linesin that
state, tjogic Must be sufficient to allow the these signals to become stable. When
these values are stable, another time must be accounted for, which is the setup
time of the register being used as the present state register (and the registers for
the work signals). This is shown as tg, in the figure. The setup time is the
amount of time prior to the active edge of the clock that a signal must be present
a the input of a device to guarantee that the output stays at the required level
after the clock occurs. Any time after the setup time requirement has been
satisfied, the next active edge of the clock can occur. The sum of these three
times provides a minimum cycle time that must be met by the system. For some
high speed TTL parts, tpg = 8 NSEC, tiogic = 19 nsec, and tg, = 3 nsec, and the
minimum cycle time would be 30 nsec, which gives a system clock frequency of
33.3 M.

As can be seen from Figure 5.30, the actual cycle time is often much longer
than the minimum cycle time. The reasonfor the longer cycletimeis not that the
controller is incapable of running faster, but rather that the functions occurring on
data path require a longer time to complete. Consider the timing relationships
shown in Figure 5.31. which shows some of the signals required to add a value
from the MBR to the accumulator. After the active edge of the clock, time is
required for the work signals to become asserted, as shown in both Figure 5.30
and 5.31. Once the work signal becomes asserted, another propagation delay time
is required; in this instance, it isfor the driver to assert the value contained in the
memory buffer register onto the bus. Once the value on the bus is stable, another
time is required, which is the addition time of the ALU. It is assumed that the
functionlines and the carry input line of the ALU for the addition function became
stable a the same time that the MBR_BUS-L signal became asserted; hence, these
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lines are not shown in the figure. 1f for some reason these lines were not stable
until after the data a the input to the ALU became stable, then the 1,44 Of the ALU
must be adjusted to reflect the delay time from the last stable signal. Once the
correct results are stable on the outputs of the ALU, a g, is required before the
clock line of the accumulator can be asserted. The sum of the times required for
the longest sequence of events in a single cycle establishes the minimum allow-
able cycle time for the data path, which is usually longer than the minimum cycle
time for the controller. So the controller time is adjusted to match the cycle time
requirements for the data path in the operation of the system.

Two basic functionsare provided by the systems shown in Figure 5.26 and
Figure 5.27. These are the choice of a next state, and the assertion levels of the
control signals for each state. As we have seen, the next state logic and the next
state control logic of Figure 5.27 can be implemented with memory devices. We
now formulate a different view of the function provided by Figure 5.27, and
present this view in Figure 5.32. The same functionality is shown: part of the
system is used to control the function of the device by sequencing through the
proper states, and the other part of the system controls the flow of datain the sys-
tem hy asserting the appropriatesignalson the data path devices. The only addi-
tion to the process included in Figure 5.32 is the address selection portion of the
system. The function provided by this section is to determine the address in the
logic memory that contains the correct next state and control line assertion infor-
mation. This address is a function of the present state and the external inputs.
When the memory addressis provided, the memory responds with the location of
that address, and this information (the new state and new levels for the control
sgnal assertions) is availablefor the control registers. The number of states, the
complexity of the state diagram, and the number of inputs to the system determine
the amount of logic memory needed for the selection of a next state. In addition
to the complexity of function and number of inputs, the number of control signals
generated by the unit determines the amount of logic memory needed for control
signa generation.

Memary
Address Memory: Logic of Next State Determination
and Control Signd Assertion
Externd | Next Control Signd
‘ ée?éicrg State Assa“[_iog
Inputs Lagc Lagc

1 l |

Present Stete| Control Signd Register

| 1

to control points d data path

Figure 532 State Madchine Implementation with Memary Implementing Logic Functions
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The diagrams in Figure 5.27 and Figure 5.32 represent the same function.
and the differenceis basically cosmetic. Figure 5.32 shows the elementsof Fig-
ure 5.27 rotated by 90'. However, the diagram shown in Figure 5.32 matches
most of the diagrams shown for another control technique which is called micro-
code. Weexpand the detail of Figure5.32 dightly to obtain the system shown in
Figure5.33.

The present state register function and the registered control lines are com-
bined in a register called the Mlgromstrucuon Register. All of the Togic for con-
trol signal generation and next state  selection is combined into one functional unit
cdled Microcode Memary. Instead of a location in the microcode memory being
strictly a function of the current state and all inputs, a functional unit 1abeled
Microcode Address Generation performs the function shown as Address Selection
in Figure5.32. This unit selects the appropriateaddress for the next set of control
lines; this forms the next microinstruction to execute. The complexity of the
microcode address generation unit reflects the designer's tradeoff choices for
speed versus complexity. We will describe different approaches in our next
design example. Just like the present state register identified the state of a state
machine controller, the registersand memory elements included in the microcode
address generation module identify the state of a microcode machine. The
address issued by the microcode address generation module identifies the next
micminstruction to execute; the address is then anal ogousto the information con-
tained in a present state register. However, the analogy is not exact, since the
functionsof the microcodeaddress generation modulecan include things like sub-
routine linkage capabilities and loop control. However, the analogy does demon-
strate the close conceptual relationship between microcode systems and systems
designed with a state machine approach. The micminstruction register provides
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the sequentia control functions of the present state register, and it also specifics
the assertion of the control linesd the data path.

This model is in agreement with the intuitive concept that work is accom-
plished by activatingcontrol signalsin a sequential fashion. The sequential action
of the control signals is specified by the sequence of microinstructions. and the
address selection of the next microinstruction is derived during the execution of
the current microinstruction. Thus, if the microinstructionswere strictly sequen-
tial, the address could be provided by a simple counter. which would increment
from one address to the next. The counter would be reset when the process
needed to start again. The next address selection processcan become arbitrarily
complex; the address o the next microinstruction to execute can be one of many
determined by a complex algorithm. In any case. a number of bits are used to
control the selection of the next address; the remainder of the bits in the microin-
struction register are used to control the data flow through the data path section of
thedevice.

Let us begin our discussion o the contents of the microinstruction register
by including whatever bitsare required to specify selection of the address of the
next microingtruction. In Figure 5.33 these bits are merely labeled " Sequence
Information.” The next bits to include in the microinstruction register are the con-
trol lines identified on the data path block diagram; we include one bit for each
control line needed. The result is an extremely wide microinstruction register; the
number of bits is the same as the number of control lines required to select the
next address and control the data path. This style of microcode has received the
name of “horizontal microcode,” because the microcode grows wider as more
functions are added.

The horizontal microcodetechniqueresultsin the fastest microcode controli-
en for two separatereasons. The first is that, sinceall of the bitsare independent,
multiple operations can be specified in the same microcode word. For example,
assume that the vaue in the program counter is to be loaded into the memory
address register and into the accumulator. In a horizontal scheme the clocks of
both registers could be activated smultaneoudly. resultingin the transfer of infor-
mation to two destinations in one cycle. This concurrent operation is not limited
to information transfers over a bus, but can be observed in any independent opera-
tions. The second reason for enhanced speed is that no decoding is required for
the control signals. This reducesto a minimum the cycle time required for opera-
tion of the system.

In contrast to the horizontal microcode method is a technique called :‘verti-
cal_microcode.” This method emphasisesnot speed, but rather conserving system

' resources — power and microcode bits. The method calls for combining the bits
required for basically independent functions. For example, in Figure 5.33 there
are six lines which, when activated, assert the data lines on the bus. These func-
tions are not totally independent: we do not want more than one of these asserted
a any time. Therefore, we can specify a single line to be asserted by encoding
this information in fewer bits. In this case, we can specify one of the six lines
with 3 bits; for example, a decoder such asa *t38 could be used.

The encoding of information in this manner has two effects, both of which
tend to slow down the operation of the system. The firgt is that the decoding of
the bits is not free; more time is required in each cycle to alow for the decode
function. This increases the time required far each cycle. The second cause of
dowdown is that the system has a reduced capability of performing operationsin
pardlel. Consider, for example, encoding the choiceof N bus destination linesin
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5.7.

logy N bits. Combining bits in this manner precludes sending information to two
destinations simultaneoudly; such an operation would require two cycles with the
encoded scheme. Thus, the time required for accomplishment of work is
incressed because the individua cycle time is increased, and because more
microingtructions are required. This increasein the number of microinstructions
causes the required microcode memory to increase ' vertically," which leads to the
name of this technique.

The horizontal and vertical microcode methods both control the action of a
system by sequencing through a set of microinstructions. However, each
approach uses the system resourcesin a different way. The horizontal approach
chooses to consume resources (power, number of bits in microcode word, etc.) to
make the system run faster, both from concurrency of many simultaneousopera-
tionsand from the minimal cycle times available. The vertical approach chooses
to conserve the resources, limit concurrent operations, and accept a slower overall
system speed. However, both mechanismsshare many common characteristics,as
demonstrated by the microcoded system in the following section.

A MicrocodeController

To demongtrate both the vertical and horizontal concepts of microcoded control,
we will design two different microcode controllers for a computer system. The
computer we will use for this example is patterned after the Data General Nova,
which has been used for many years. This is not as exotic a machine as many
newer machines. In fact, in many real aspectsthis system has been superseded by
the 16- and 32-bit microprocessors available today. This system has been chosen
to illustrate the ideas presented because it is simple enough to present in the
confined space of a this section, and at the same it is complex enough to pro-
vide an fairly comprehensive example. A block diagram of the system is shown
in Figure 5.34. Note that the diagram identifies the registers known to a

16-Bit Computer System

! Instruction Memory Address|
Accumulator A Stack Pointer Register Register
Memory
Accumulator B Stack Limit Program Counter
Arithmetic
) Status
Logc Register
Urit Input/Output

Figure 5:34. Block Diagram of 16-Bit Computer System.
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programmer, without attempting to identify the physica links that connect the
registers. The possible data transfersand arithmetic operationsare defined by the
instruction set. We will not describe the entire instruction set of such a maching;
rather, we will select a few ingtructions and examine the rudimentary operations
required to accomplish those instructions. If our instruction set matches the Nova
exactly, we would like our module to execute the instructionsin such a fashion
that an observer would not be able to differentiate between our machine and a
Nova: the "macro” machine behavior would be equivalent. We would then
accomplish the work of the**macro™ machine with our *micro™ machine.

The machine depicted in Figure 5.34 has two 16-bit accumulators. In the
Nova architecture these accumulators are also the first two locations of memory.
Thus, actual registersare not required for this information; it will reside in the
first two locations of main store. The memory address register, program counter,
stack pointer, and stack limit register provide 24 bits of addressinformation. The
instruction register holds 16 hits, not all of which are needed by all instructions.
The status register is composed of 4 bits that are both controlled and utilized by
many of the instructions of the computer. The Nova instruction set utilizes yo
instructions instead of having strictly memory mapped LO. Thus, to allow for
these instructions we will nead some interface lines as well. These will be
described in more detail as we discuss the implementation.

The concepts of microcoded control can be agpplied at different levels. The
address control, the microcode memory, and the microinstruction register can be
composed of individud registers and memories, or the entire system can be part
of asingle integrated circuit. Many microprocessors utilize a microcoded control
section internal to the chip. However, one family of components, called bit sliced
processors, has been specificaly designed to utilize microcoded control. The
members of thisfamily are so constructed that they can be put together in systems
to satisfy a variety of constraints. In order to implement a microcoded system to
perform the action of the system of Figure 5.34, we will use two of the most com-
mon microcoded devices. These are the 2901 Four Bit Microprocessor Slice and
the 2910 Microprogram Controller. These units are available from severa
manufacturers, as well as newer units with extended capabilities.

A smplified block diagram of the 2901 is shown in Figure 5.35. This
diagram shows the main data paths, but the control lines are merely suggested,
and some of the data paths are not shown. Whet the diagram does indicate is that
internal to the 2901 are a 4-bit ALU, a register bank holding 16 registers, a Q
register, and multiplexersto control the flow of data. The registers (implemented
in RAM) have two sets of addresses; the value of the register identified by the A
addressis loaded into the A latch, and the value of the register identified by the 3
addressis loaded into the B latch. These loads occur at the beginning of a cycle,
so that the values are availableto the operand select function. The operand selec.
portion of the device selectsone of eight availablecombinations of the Data In, A,
B, Q, and zero vaues. The two values chosen are fed into an ALU capable of
AND, OR, EXCLUSIVE-OR, ADD, and SUBTRACT, as well as some variations of
these operations. The output of the ALU can then be used as an output of the
chip, as well as providing information to the registers. Writing can occur to the Q
register, or to a register specified by the B addresslines. In addition, there are
data lines that alow cascading the modules to form units of higher numbers of
bits, as well as linesthat can provide status information. A data sheet should be
referenced for a complete specification, but for the purposes of our example we
need to know the data and control lines to be concerned with for the data path and
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microcode sections. The data path is basically taken care of by the data in and
data out lines; in addition some status lines need to be utilized. The control lines
include the A and B addresses, which are each 4 bits, and the nine control lines.
These we will need to includein the microinstruction register.

The address selection portion of our microcoded machine will be handled by
a2910. asimplified diagram of which isshown in Figure5.36. Like the 2901. this
diagram does not show all of the featuresof the 2910, but points out the major
capabilities. The unit is capable of handling a 12-bit address, which will address
up to 4,096 words of microcodememory. This is sufficient for most applications;
however, similar units are availablethat will control more address bits. The mul-
tiplexer in the unit selects one of four sources:

e The data path alows for an externa source to specify what the next microin-
struction address will be. Thisis useful for jumps, subroutinecalls, and similar
activities.

e Theregister path allows the functional unit to specify at some previous time an
address used to specify a microinstruction.

e The stack path is used for returning from subroutines, and for providing an

addressduring special function operations.

The microprogram counter-register path is used to proceed to the next instruc-

tion.
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The incrementer is not built into the microprogram counter-register, a situation
that seems unreasonable. However, consider the desired action when a subroutine
address is provided via the data path. In this situation, the microprogram
counter-register contains the address of the next instruction in sequence (after the
currently executing microinstruction), and this addressis to be placed on the stack
as a return address. The output lines contain the address of the subroutine (sup-
plied as an input on the data lines), and the microinstruction at that address will
be fetched for execution. The address of the microinstruction that should be
obtained next is the second instruction in the subroutine; therefore, the value
presented to the microprogram counter-register is one more than the subroutine
address, not one more than the current address. Hence, the incrementer is con-
nected to the output lines of the multiplexer, not to the microprogram counter-
register containing the current address.

The control lines of the sequencer select one of sixteen instructions, many
of which have a conditiond nature associated with them. The conditiona
mechanism allows the address at the output to be one of the four values available
a the input to the multiplexer, the selection of which depends upon the condi-
tional inputs. Not shown on the block diagram are three output lines, which can
be used to control the source of information presented to the input lines: PL-L,
MAP-L, and VEGL. For most of the instructionsPL-L is asserted; this can be used
to enable information from the microinstruction register to provide the necessary
data. One of the ingtructions causes the MAP-L line to be asserted; another
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instruction causes the VEC-L to be asserted. These signals are provided so that
when some external information, such as the op code of an instruction, is to cause
the system to jump to an externally supplied address, that address can be made
availableto the sequencer. In this case, the norma source of address information
is disabled (PL-L is deasserted),and the aternate source of address information is
enabled (MAP-L or VEC-L is asserted). The mapping between opcodes and the
address of their respective microcode implementations can be easily stored in a
PROM. The output enable of the PROM can be directly connected to the MAP-L
signal, and when the system requires the mapping function to be performed, the
appropriate addressis supplied to the inputs of the sequencer. TheVEC-L lineis
utilized in the same fashion: an external address, such as a vector supplied by the
user, isenabled onto the input linesat the appropriatetime.

Like the 2901, the 2910 contains both control lines and datalines. However,
in this implementation the data lines of the 2910 are all concerned with microcode
addressesin the control section, and do not have a direct bearing on the data path
section of the system. The data path for our example is shown in Figure 5.37.
This diagram indicates that we are going to ssimulate the action of the 16-bit
machine with an 8-bit system; 16-hit transactions will then require two transfers.
The 8-bit system is composed of two 2901 processing elements that have been
combined to provide 8-bit arithmetic and logic capabilities. The address and
ingtruction information needed by the processor section are provided by the
microingtruction register (MIR). In addition, the MIR supplies 8 bits of data to
provide a constant load capability. Often a system designer will need the capabil-
ity to place a known value in a register, or provide a constant for comparison or
masking purposes. The other modules of the processor shown in Figure 5.37 are
for the data and address paths. The data path is composed of bidirectional regis-
ters; this alowsour system to load information in 8-bit quantities, and these quan-
tities are then availableon a 16-bit bus. The reverse path is also available, allow-
ing our module to accept 16-hit values 8 bits at a time. The DATA HIGH and
DATA LOW blocks of Figure 5.37 can be constructed from individua registers
and hi-state drivers as shown in Figure 5.38(a). The address path is broken into
three 8-bit quantities, which together form a 24-bit address. These registers can
be read individually by the 8-bit system, or they can provide an address under the
control of an arbitration module, which is not considered here. The address
modules of Figure5.37 can be created with the register and driver configurations
shown in Figure 5.38(b).

Not shown on the diagram are the control signals used to interact with the
memory and the UO. This system is patterned after the Nova, but many of the
features are different. We will assume that there is a separate memory address
space and YO address space; this will require a method to identify the address
currently on the address bus. That is, the control lines must establish a different
protocol (either different physical lines or a different accessing mechanism) for
the /O devices than that used for the memory locations. The Nova /O structure
calls for three functions/registers at each interface address, and these are labeled
A, B, and C. In this implementation, there are write and read control lines to each
of these elements. In addition, there are some other control signals for testing
conditions and causing action at the interface. Table 5.3 identifies the various
control signals that we will include in our design, in addition to those found in
Figure5.37.

With the detailed data path block diagram available, the signals needed to
control the flow of information in the system have been identified. In addition,
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Figure537. Dda Path Block Diagram o Implementation of the 16-Bit Computer System.

the other control signals needed in the system have been specified. We are ready
to set up the microcode control section of the computer. Before doing that, how-
ever, we will consider one more portion of the circuitry. This system is using an
8-bit processor to simulate the action of a 16 bit-processor, and hence must be
able to do 16-hit arithmetic. In fact, to increment the program counter, a 24-bit
addition must be possible. To accomplish that we have included the circuitry
shown in Figure 5.39 to control the carry into the processor. As seen by the
logic, under the control of the MIR the carry into the ALU (ALU_C_IN-H) can be
forced to zero, forced to one, set to thecarry out of the previous cycle (uCRY-H),
or set to MCRY-H. MCRY-H is the carry bit from the status register of the 16-bit
machine, which is not shown. This control of the carry input allows the designer
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totd flexibility; multiprecision adds can be achieved by doing 8 bits a a time and
feeding the carry to the next cycle through uCRY-H. Adds of 32-bit words can be
done at the assembly language level, and the microcode would then select MCRY-
H as the carry in the appropriate cycle.

With this set of control bits identified, we will proceed with the design pro-
cess. It should be noted that the design is not complete, and more control lines
would be required for the entire system. In the horizontal microcode approach
there will be 1 bit in the MIR for each control line. This resultsin a very wide
word, but the clock cycle time is as small as possible, and the available parallel-
ism is at a maximum. Figure 5.40 shows a diagram of the resulting system. A
more detailed schematic diagram is found in Appendix B.

‘The diagram shows a system with the same general organization as seen in
Figure 5.33. The 2910 provides the address information, and the microcode
memory modules supply the microinstruction to the MIR. The bits comprising the
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ALU_C_OUT

SYS_CLK-H

Table 5.3. Additional Control Lines for 16-Bit Computer.
Signal Name  Definition

MEM-H  Asserted when the transfer is for memory.
READ-H  Asserted when the transfer is a read (to cpu).

ADR_VALID-H  Asserted when address valid;
deasserted & end of cycle.

DATA-VALID-H  Asserted (by CPU for write, by device
for read) when data valid.

DATOA-H A contral line; asserted on output.
DATOB-H B control line; asserted on output.
DATOC-H  C control line; asserted on output.
DATIA-H A control line; asserted on input.
DATIB-H B control ling; asserted on input.
DATIC-H  C control ling; asserted on input.

STRT-H  Start control line; asserted when
needed by 170 ingtruction.

CLR-H  Clear contral line; asserted when
needed by 1O instruction.

IOPLSH YO pulse; asserted when needed
by YO instruction.

MSKO-H  Mask out; asserted during MSKO instruction,

INTA-H  Interrupt acknowledge; asserted
during INTA instruction.

DCHA-H  Data channel acknowledge; asserted a
beginning of data channel cycle.

DCHI-H  Data channel input; asserted for channel input.
DCHO-H  Data channe output; asserted for channel output.

IORST-H IO reset; asserted during IORST
ingtruction. console reset.

CRY SEL{1)-H -
TRY SEL(01-H X
HI 4701
MCRY-H T Hux
“H o a UCRYH " , ALU_C_IN-H
—n
™ I

Figure539. Carry Control Circuitry for 16-Bit Computer System.

MIR can be loosely grouped into three categories: bits controlling the microcode
address system, bits controlling data flow on the data path, and bits controlling
interaction with other machines. We will briefly discuss some points concerning
each of these sections.

The address control section has four lines (SEQ_INSTR) to control the func-
tion of the 2910. When these lines identify a conditiona type of instruction, the
action of the module is further specified by the condition code and condition code

Chap.5: Control System Design 249



VEC-L

VECTOR VEC-L

VECTOR_INFO(9:0)~H

101- >—————
® peivee| MICODE ADRING:0)-H| e
- MAP-L

e 0o —y o 2910 wH——
o
MAPL ™ scaueNcER | PL-L
CCEN
IR_CLK-H INSTR l_c mp £} —
D> ax geg ®  pom - sinior | MICODE_ADRY9:0) —H
SVS_BUS(7:0)-H DIT0) Q70 RO 019:0) F—t
- [ THTRL)
PL-L de O
DRWR
bine  019:0) p—d v |
-~ S |&
= |2
w x
w 1 3 |z
»% e * o
' r~ ?
TEST » x
CONDITION ©
INPUTS »
COND
no MUK L

73};‘!1

CC_SELECT(2:0)-H

C_ADR{9:0)-H

CONST (7:0)-H

A_ADR(3:0)-H
B_ADR(3:0)-H
INSTR(8:0)-H
CRY_SEL(1:0)-H

Figure540. Logic Diagram for Horizontd Microcode Control.

enable (CC_ENBL) lines. The condition code is actually selected from a number
of available possibilitiesby CC_SELECT. We have shown eight possible inputs;
additiona inputs could be considered by allowing a larger multiplexer and another
select line. These lines control the function of the 2910, but occasionally addi-
tional information is required by the sequencer. For example, if the instruction to
execute is a jump or jump subroutine, then the target address must be supplied,
which is the function of the MICODE_ADR_IN lines.

There are three sources of information into the sequencer, each of which has
responsibility for a different kind of information.

o The control addressdriver (CNTRL ADR DRVR) is the selected source when FL
is asserted, and provides information from the MIR. This allows addressinfor-
mation to be directed to the sequencer directly from the microcode.

¢ The second source, the map ROM (MAP ROM), is selected when the MAP signal
is asserted. This allows a designer to map bit patterns loaded into the
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Figure540. (cont.) Logic Diagram for Horizontal Microcode Control.

instruction register (INSTR REG) to specific addressesin microcode memory at
which the necessary instruction sequenceis found.

e The final sourcefor addressinformation is the vector driver, which accepts an
addressfrom an external source and supplies that address when the VEC signal
is asserted. This alows an address to be supplied directly from a user-defined
source.

As can be seen from the diagram, the sequencer requires 18 lines to control these
functions, and these linesform the first part of the MIR.

The control and data lines of the data path elements are the next to be
included in the MIR. The CONST lines allow a known vaue to be injected into
the system. This is very useful for providing values to be used as constants,
masks, and match values. The A and B address lines (A-ADR, B_ADR) are
required by the 2901 ALU to specify the addresses needed for register
identification. The instruction lines (INSTR) specify the action to ke taken by the
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Table54. Bit Hddsfar Microoode o Table55.

Number Radix
of of
Label bits Representation Function
ADR 16 Address number of bits depends an implementation
(20 hitsin thisexample).
SEQINS 4 16 Saquencer ingruction; bitsto I lines an 2010,
CCEN 1 2 Condition code enable.
CC SEL 3 8 Condition code select; address of condition to test.
SEQ ADDR 10 16 Seouencer address; lines to provide address for jumps.
DATA CONS 8 16 Daa congant; for congtants to bus.
A ADR 4 16 A addresslinesd 2001
B ADR 4 16 B address lines of 2901
ALU INS 9 8 Instructionlines of 2901
CRY SEL 2 2 Carry sdlect lines.
BUS SRC 8 2 Bus sourcelines.
BUS DEST 8 2 Bus degtination lines.
MEM YO BITS 19 2 Bitsfor memary and /0 interaction.

ALU. If the instruction to be executed requires a carry input. then the CRY-SL
lines specify the appropriate carry information. These 27 lines control the pro-
cessing accomplished by the processing section of the system, in addition to pro-
viding constants as needed.

The remainder of the bits are those required to control the individual ele-
ments of the system. By alowing total control of the lines (since each control
lineisindependent of the others) the maximum parallelismis possible. For exam-
ple, dl of the extemal registers can be cleared by creating a zero vaue on the bus
(al bits zeroin constant field, assert CONST_BUS-L) and assert all of the appropri-
ate clock lines. This would alow loading of six registers smultaneously. The
bits in the microcode word also contain the control bits identified in Table 5.3 for
interaction with external units. This last section of the MIR, which contains the
control linesfor the data path and the interaction with extemal devices, contains
35 hits.

Oneof the best ways to become familiar with the system and its capabilities
and wesaknessesis to prepare microcode for it. To thisend we will look at a few
lines of code that do two simple functions: simulate the action of an ADD A, B
instruction and a JUMP ingtruction. These instructionsare broken into separate
fetch and execute portions, and the following assumptionsare made: the 24-bit
stack limit register comprises registers 5, 6, and 7 in the 2901s, the 24-bit stack
pointer comprisesregisters8, 9, and 10 in the 2901s the 24-bit programcounter is
contained in registers 11, 12, and 13; 16 hits of instructionare located in registers
14 and 15 in the 2901s; the A and B registersare coincident with memory loca-
tions 000, and 0024 (byte addresses), and are stored in memory.

The microcode is contained in Table 5.5, which can be confusing if not
approached in a regular fashion. Each of the headings in Table 5.5 identifies a
group of bits, and their definitions representations are given in Table 54. Each
microcode word identifies a single operation, but since there are a large number of
bits, a correspondingly large number of things can happen during each microcode
cycle. Each group of bits identifies an action to be performed by the system.
Required macro operations are accomplished stepwise by a succession of micro
operations. Table 5.5 contains threesectionsof micro operations.
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The first section (addressesOAO to 0A8) is the code for the fetch portion. Note
that the function of this code is to do FC — MAR, which takes three 8-bit
transfers, & the same time that it does PC + 2 — PC. Note aso that the bus
destination lines are normally high in this implementation, so that (see the
instruction at 0A1) when a value is available on the bus (a bus source line is
asserted), that value can be loaded into the appropriate register at the end of the
cycle. This occurs becausethe 0 becomes a 1 at the next clock pulse, creating
a rising edge that causes the required load of information. Another thing to
note is that the memory interaction is started by the instruction at location OA4,
and the instruction at location 0A5 waitsfor the memory to respond before con-
tinuing. Instructions located a 0A6 and 0A7 move 16 bits of instruction into
the internal IR, as well as the 8 most significant bits to the IR that addressesthe
MAP ROM. Theinstruction at location0A8 causes the sequencer to jump to the
address specified by the MAP ROM, which will be the beginning of the code for
the appropriate macro instruction. For this example, that address will either be
OF2 or 121; in general, the addresscan map to any appropriate location.

The second section of code (addresses 02 to 100) performs the ADD A, B
instruction. The address zero is forced into the MAR, and that value (the A
value) is copied to temporary locations in the 2901s (registers2 and 3). Then
the addresstwo is placed in the MAR, and that value is added to the temporary
aready in the 2001s Then the result is written back, and control moves to the
fetch portion to continue execution. Again note the memory interaction: the
action is initialized by the microcode, and the microcode continues when the
memory responds.

The fina section of code (addresses 121 to 129) is for the JUMP instruction.
The assumption here is that the instruction is actually 32 hits long — 8 bits of
op code and 24 bits for the target address. The fetch section has placed 8 of
the 24 address bits in the internal IR, in register 15. So, the first part of this
code duplicates the fetch action to obtain the next 2 bytes. These bytes are
then transferred from the data registers to the address registers, along with the
value contained in register 15. The microcode then moves back to the fetch
portion to proceed with the program. Note here that the maximum speed is not
attained, since the work done by the instruction at location 127 could be done
with the work done by the instructionat location 125, and the time required for
the execution of the instruction would be reduced by one cycle.

Other observations can be made concerning the microcode in Table 5.5.
Some of the fields are not used much of the time, and some of the fields have
only a small number of legal patterns. This is one of the observations that gives
rise to the use of vertical microcode. We wish to reduce the number of bits
required in a microcode word, but we still wish to be able to do all of the neces-
sary functions. The resulting system uses single fields for multiple functions, and
combines patterns into decoded information. For our example, we will combine
the functionsof the 2910 address, the data constant. the A and B addressesfor the
2901s, and the ALU carry select into a single field. In addition, we will combine
the bits required for bus source into one field, bus destination into another, and
further encode the bits required for the memory-I/O interaction. The resulting sys-
tem is shown in Figure 5.41. A schematic showing the detailed connections of
the componentsisincluded in Appendix B.

This system is very much like the system shown in Figure 540. The con-
trol signals are identical; however, there are limitations on how many control
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Table55. Horizontal Microcode for Fetch. ADD A.B. and JUVP.

SEQ CC CC SEQ DATA A B ALU CRY BUS BUS
ADR INS EN SEL ADR CONS ADR ADR INS SEL SRC DEST
4bits 1 bit 3bits 10 bits 8dits 4 bits 4 bits Qbits 2hbits 8 bits 8 bits
ddd, d, d, dy ddd, dd, ds d, dddy dd, d---d; d--dp

Q0 E X X XXX 02 X x 037 xx 10111111 11111111
0Al E X X XXX XX B B 200 00 01111111 11111101
0A2 E x X XXX XX C C 203 10 01111111 11111011
0A3 E X X XXX XX D D 203 10 01111111 11110111
0A4 E X X XXX XX X X 144 xx 11111111 11111111
0AS 3 1] 1 0AS  xx 3 x 144  xx 11111111 01011111
0A6 E X x XXX XX X E 337 xx 11101111 11111111
0A7 E X b3 XXX XX x F 337 xx 11011111 11111110
0A8 2 X 3 XXX XX X x 144 xx 11111111 11111111
O E b3 X XXX 00 X x 144 xx 1011t111 11110001
O3 E 3 X XXX XX x x 144 xx 11111111 11111111
o4 3 0 1 OF  xx X x 144 xx 11111111 01011111
OB E x x XXX XX x 2 337 xx 11101111 111121111
o6 E X X XXX XX b3 3 337 xx 11011111 11111111
OFf E X X XXX 02 X x 144 xx 10111111 11111101
0F8 E X X XXX XX be x 144 xx 11111111 11111111
om 3 0 i O  xx X x 144 xx 11111111 01011111
OFA E X x XXX XX 2 2 305 00 11101111 11111111
OB E X x XXX XX 3 3 305 10 11011111 11111111
OFC E X x XXX XX 2 x 134  xx 01111111 11101111
OFD E X X XXX XX 3 x 134 xx 01111111 10111111
OFE E b3 x XXX XX X x 144  xx 11110111 11it1111
OFF 3 0 1 OFF xx b3 x 144 xx 11110111 ti111111
100 3 1 x 0A0 xx X x 144 xx 11111111 11111111
121 E X 3 XXX 02 X x 037 xx 10111111 11111111
122 E b3 X XXX XX B B 200 00 01111111 11111101
123 E x x XXX XX C C 203 10 ottty 11111011
124 E x x XXX XX D D 203 10 01111111 11110111
125 E X 3 XXX XX X x 144 xx 11111111 11121111
126 3 0 1 126 XX X x 144 xx 11111111 01011111
127 E X x XXX XX F B 334 xx 11111111 11111111
128 E b x XXX Xx x C 337 xx 11101111 11111111
129 3 1 x 0A0 =xx X D 337 xx 11011111 11111111

Signals can be assarted at any given time. For example, one of the functions of
the horizonta microcode example was to load a zero vaue into three registers
simultaneoudly; in this implementation that would require three separate instruc-
tions, since only"one destination line can be asserted at any time. Also, the hor-
izontal microcode method has independent address and data fields in the code; it
would be possible to jump to one address and load a constant in the same cycle.
With the vertical microcode implementation one field is used for both these func-
tions; hence, one could not load an arbitrary constant and perform a microcode
jump at the same time. This type of system is, in genera, slower than the hor-
izontal microcode system, since more instructionsare required, and the cycle time
islonger. However, the number of bits required in the microcode word is smaller,
and the total number of bits (number of words x number of bits/word) is, in
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Table 55. {cont.) Horizontal Microcode for Fetch, ADD A.B. and JUMP.

MEM /O
BITS ADR
19 bits

d---d, ddd,¢

Comment

0000000000000000000 QMO
0000000000000000000 0A1
0000000000000000000 0A2
0000000000000000000 0A3
1110000000000000000 0A4
1110000000000000000 0AS
0000000000000000000 0A6
0000000000000000000 0A7
0000000000000000000 OAR

(0000000000000000000 OF2

PC ~ MAR; increment PC (PC = R11, R12, R13)

Move constant 02, to Q reg of 2901.

Rl — MAR;; increment R 1.

R12 —» MAR 54 inc R 12 with previous casry.

R13 —» MAR 3 46 inc R13 with previous carry.

MEM bits initiate memory read action.

Stay here till memory ready; 0 — 1 on destination lines loads result.
Move LSB to R14.

Move MSB to R15 and IR.

Jump to address provided by MAP ROM.

0 - MAR

MEM bits initiate memory read action.

Stay here till memory ready; 0 — 1 on destination lines loads result.
LSB of mem value to R2.

MSB of mem value to R3.

02,5 & MAR,

MEM bits initiate memory read action.

Stay here till memory ready; 0 — 1 on destination lines |oad; result.
Add LSB of memory to R2.

Add MSB of memory to R3 with previous carry.

R2 = MEM, 4

R3 = MEM; 4

MEM bits initiate memory write action.

Wiait here till memory done.

Jump back to address 0A0,4 for next fetch.

Move constant 02,5 to Q register of 2901.

RIl = MAR,; increment R11.
R12 = MAR,,; inc R12 with previous carry.
R13 = MAR,,.,; inc R13 with previous carry.

MEM bits initiate memory read action.

Stay here till memory ready; 0 — 1 on destination lines loads result.
Move first byte to PC from R15.

Move second byte to PC from MBR.

Move third byte to PC from MBR; jump to fetch.

general, smaler. For this example, the number of bits in the microcode word
decreased from 80 bits (horizontal) to 45 bits (vertical), a decrease of over 40 per-
cent in the number of lines required.

The method a designer uses to combine functionsand lines into groups, and
the amount of overlap used in a system, reflect the design choices made in the
design process. If adesigner is usng 8-bit parts, he may attempt to end up with a
system that uses a multiple of 8 bits. If a designer is constrained by power
requirements, he may combine as many fields as possible into one. Any of a
number of different requirementswill influence the choices made in the process.
This example brings out several techniques that can be used, which we point out
here. The constant lines, the address lines, and the A and B addresses from the
ALU have been combined into a singlefield. This constrains what can be done at

Chap.5: Control System Design 255



256

VECH .
ECL —de ER[ HICODE_ADR_IN(9:0)-H e wh—— VL
VECTOR_INFO(9:0) -H ~ e HAP-L
e BIROY  D(Y:0} o o 2910 " ————
HAP-L 1™ seauencer rb PL-L
— Qe
R -
IRCLKH b ox er . NP o sy | MICODE_ADR(5:01 -H
SYS_BUS(7:0)-H " ’
A et [4730) @170} et 01%:9) p—iy
. TNTRL
PL-L e
b 1L 1L ) —J ) w
ey Ha 3
l; |p
w =
o 3 |x
» «
S p— 8
=) » £
CONDITION 5
NUTS 2
—_ 1 mx
]
2 [
! 3
0
A
CC_ENBL-L
CC_SELECT(2:0)-H
CON_LINES (9:0) -H
NOTE: CON LINES ARE MALTIPLY D anseeaeony |
A_ADR(3:01-H = CON_LINES(7:4)-H

B_ADR(3:0)-H = CON_LINES(3:0)-H
CONST(7:00-H = CON_LINES(7:0)-H
CRY_SEL(1:03-H = CON_LINES(9:8)-H

Figure541 Laogic Digram for Vertical Microcode Control.

one time, since only one functioncan be performed by the CON_LINES & any one
time. Ouc exampic is die jump/ioad conflict. Another example is loading cou-
stants into the ALU: since the B address lines specify the destination of a write
function, information that is to go to an arbitrary register in the ALU is first placed
in the Q register, then moved to the appropriateregister. Thus, what was accom-
plished in asingle cycle in the previous system requirestwo cyclesin this system.

In general. it is not a good idea to permit more than one driver to place a
vaueon a bus & any onetime. Thus, there is danger in the scheme of the hor-
izontal microcode implementation, since it is possible to enable more than one
source to the bus simultaneously. This possibility has been removed in the verti-
cal microcodeexample by the use of adecoder; now only one line can be asserted
at any one time. A decoder has aso been used to identify the destination, which
removes the possibility of sending information to two or more destinationssimul-
taneoudly. Since there were eight destinationsin the origina system. a three to
eight decoder hasbeen used to do this decoding; however, since we want the abil-
ity to select none of the destinations. an additional line has been added to enable
the entire destination function. A different technique for not asserting any line
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Figure541. (cont) Logic Diagram for Vertical Microcode Control

has been used for the /O bits: the zero line is left unused. Thus a value of zero
on the /O bit lines will result in no action. Finaly. those lines that cannot be
independently asserted, such as READ, MEM, and the like, are not combined, but
left to be asserted as needed by the system.

Some care must be taken to guarantee correct system function with respect
to the nonideal nature of the decoders. W e decoder used for the bus source is
aways enabled. and the microcode system can control only the address lines.
This will result in glitches on the decoder output lines as the internal logic
changes to agree with changes of the address lines. The outputs of this decoder
are connected to tri-state enable lines of devices that can assert information onto
the data bus. These glitches will not cause problemswith the data being enabled
onto the bus, since the glitches always occur a the beginning of the cycle when
the bus lines have not assumed the correct assertion level.
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Table56.

SQ CC CC CON ALU BS BUS 1O MEM

ADR INST EN S LINES INST SRC DEST BITS BITS ADR Comment
4 hits | bit 3bits 10 bits 9 hits 3hits 4 hits 4bits 6 bits
ddd,g d, 4, d, ddd,, ddd, 4, [ dy d-:-d, dddig
o0 E x x 002 037 1 0 0 000000 OAO PC— MAR PCisdoredin Ri1, R12, R13; first,02,4 to Q reg.
OAl E x x ©OBB 200 O D 0 000000 0A1 RH - MAR incrementRil.
0A2 E X x 20C 203 0 E 0 000000 0A2 RI2 = MAR, ;: increment RI2 with last carry.
0OA3 E x x 2DD 203 0 F 0 000000 0A3 RIB— MAR, increment R13 with last carry.
0A4 E x x xxx 14 0 0 0 111000 0A4 MM linesinitiate read action.
0A5 3 0 1 0A5 14 0O 0 0 111000 0AS  Wait for memory to respond.
0A6 E x x xxx 14 0 8 0 111000 0A6  Strobe VBV LB to accept info.
0OA7 E x x xxE 337 3 A 0 111000 0A7 StrobeMEM MSB to accept info; transferLSB to R14.
0A8 E x x =xxF 337 2 C 0 000000 0A8 Transfer VBV MSB toR15 and [R.
0A9 2 x x xxx 144 0 0 0 000000 0A9 Jump toaddressprovided by MAP ROM.
OF2 E X x 000 144 1 D 0 000000 OF2 Sat MAR to zero.
on E X x 000 144 t E 0 000000 0N Set MAR, tozero.
OFM E X X 000 144 t F 0 000000 OF4 SetMR,, lozeo.
OB E X X xxx 144 0 0 0 111000 OF5 MBM linesinitiate reed action.
OF6 3 0 1 O 14 6 0 0 111000 OF6 Wait for memory to respond.
OR E x x xxx 14 0 8 0 111000 0F7  Strobe MEM LB to acoent info.
OF8 E x x xx2 337 3 A 0 111000 OF8  Strrobe VBV MSB to accept info; transfer LSB lo R2.
OF9 E x x xx3 337 2 0 0 111000 O  Transfer MBM MB to R3
OFA E x x 002 14 1 D 0 000000 OFA Load MAR with 02
OFB E x x xxx 14 0 0 0 111000 OFB  MBM linesinitiate reed action.
OFC 3 0 1 OFC 144 0 0 0 111000 OFC  Wait for memory to respond.
OFD E x x xxx 144 0 8 0 111000 OFD  Strobe MBM LB to acoept info.
OFE E X x 022 305 3 A 0 111000 OFE  Strobe MBM M3 to accept info; add LB to R2
OFF E X X 233 305 2 [} 0 111000 OFF Add MBV MB to R3 with last carry.
100 E X X x2x 134 0O 9 0 000000 100  Trandfer contentsof R2 to MEM LSB.
100 E x x x3x 13 0 B 0 000000 101  Transfer conlentsdf R3to MEM MB.
102 E x x xxx 14 0 0 0 101000 102  MBM linesinitiate write action.
103 3 0 1 103 144 0O 0 0 101000 103  Wait for memory to respond.
14 3 1 0 OA0 144 0 © O 000000 104  Jump back to fetch microcode (address0Ao).
121 E X x 002 037 1 0 0 000000 121 PC — MAR; 02, 10 Q reg.
122 E x x OBB 200 0 D 0 000000 122 Rll — MAR;, incrementRil.
122 E x x 2CC 203 0 E 0 000000 123  RI2— MAR,; increment RI2 with last carry.
124 E x x 2DD 203 0 F 0 000000 124 RI3— MAR; increment RI3with last carry.
12 E x x xxx 14 0 0 0 111000 1254 MBM linesinitiate reed action.
126 3 0 1 126 144 0 0 0 111000 126  Wait formemory to repond.
127 E x x xFB 334 0 8 0 111000 127  Strobe MEM LSB to accepl info: also copy Ri5 toR1l.
128 E x x xxC 337 3 A 0 111000 128  Strobe MBV M3 to accept info; transfer LSB toR12.
129 E x x =xD 337 2 0 0 000000 129  Transfer MBM MSB tOR13.
120 3 1 0 OO0 144 0 0 0 000000 12A  Jump back to fetch microcode (address 0A0).

The decoder associated with the bus destination control is connected in a
different fashion. Note that the system clock has been connected to the low true
enable of thisdecoder. Connecting the clock to the decoder enable in this fashion
will assert the designated signal only during the last half of the cycle, which will
prevent glitches from occurring on the decoder output lines. This prevents
unwanted action to occur since these lines activate edge triggered functions. The
/0 and memory bits do not have this enabling function, which indicates that the
system designer was willing to live with the glitches which would occur on these
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lines. If thisis unacceptable. then steps must be taken to be sure that glitchesdo
not cause unwanted results.

As with the horizontal microcode example, one of the bet ways to get a
fedl for the system capabilitiesis to prepare microcode for it. Table 5.6 contains
the microcodefor the same instructions. ADD A, B and JUMP. The fiddsof Table
56 are similar to the fields of Table 5.5. The two differencesare that the CoN
lines in Table 5.6 (10 bits, base 16 representation) combine the function of the
SEQ ADR. DATA CONS. A ADR, and B ADR, fiddsof Table 5.5, and the busand
1/0 lines are encoded in the vertical example, and hence represented in base 16.
The codein Table 56 performs the same functionsas that in Table 5.5, but more
instructionsare required. For example, at G2 of the horizontal code is an instruc-
tion that loads zero into three registerssimultaneously. With the vertical example
this requires the three instructionslocated at 0F2, OF3, and OF4. This is an exam-
ple of the way that code will "'grow" in the vertical dimension to perform a func-
tion, when compared to a horizontal implementation.

The above examples demonstrate that microcode is a technique that enables
adesigner to perform work with a state machinetype of controller,and have the
action dictated by the contentsof a memory. The microinstruction register of the
microcode machine serves the function of the present state register to follow the
progress of the work to be performed, and the MR and microcode memory com-
bine do the work of the decode portion of a state machine. The net result is to
alow assertion of control signals using techniquesof low level programming.
This permits nested subroutinesand conditional jumps to be pan of a hardware
designer's collection of usable techniques. The designer can then make design
choices based on the constraints of his particular design to accomplish the goals
of his system, using whatever combination of horizontal and vertica techniques
may be most beneficial.

One final comment is in order concerning the design examples used in this
chapter. The examples have become increasingly complex, starting with the Sm-
ple, seven state controller for the FIR filter function, and ending with a controller
capable of implementing the necessary control for an entire computer system.
Thus, the microcode mechanisms can appear to be much more complex then the
state machine or delay methods of control, when the principles on which all o the
controllersare based are the same. The apparent complexity stemsfrom the com-
plexity of the data path being controlled, not from an inherently complex tech-
nique.

Microcode Machine Example: VAX 111780

The microcoded method of control implementation has been used by meny
machines since the appropriate memory technology became available, Each o
these machines has a unique blend of techniquesto generate its control signals.
One of theese examples was introduced by Digital Equipment Corporation in the
1970s. This system. the VAX 11/780, is a 32-bit machine with general purpose
computing capabilities. The system has been utilized for scientific, business, and
office applications, and a variety of models with different speeds and complexity
are now available.

The vax 11/780 itself has a microceded engine to control about 2,600
integrated circuits on 19 circuit boards. The clock cycle time of the sysem is
200 nsec, applicable to both the internal modules and the bus that allows con-
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nection of memory modules and peripherals. The organizationof the system is
shown in Figure 5.42. The diagram is done to reflect the physica divisiondf the
system as well as the logical connectionsavailable. As can be seen from the
figure. a number of data paths are used to transfer information between system
components. The synchronous backplane interconnect (SBI) is the mechanism
used to transfer information from memory and peripheral devices into the CRU
itself. This busis time shared between address and data, and the highest data rate
will occur when an address is transferred, followed by two 32-bit data words.
This results in a data rate of 8 bytes in 3 cycles (600 nsec). or 13.3 Mbytes per
second. The SBI control interactswith devices on the SBI to perform whatever
transfersare required by the system.

The internal data bus Is used to move information between any of the major
system componentsas required by the system. This is in contrast to the other
buses with a more specific purpose. The control store bus is composed of the
microcodebits, and is used to control the action of all of the system components.
The memory data bus is used to transfer informationto and from memory. This
includes the cache memory as well as the memory accessible via the sBI. The
virtual address provides the address of information requested by the program in
the virtual address space; this must be converted to an appropriate physical
address, which will be placed on the physical address bus. Finaly, the micropro-
gram control bus is used to address the appropriate microcode word, which will
be extracted from the control store and used to specify the appropriateaction.

Some of the blocks connected by these buses are self-explanatory. The SBI
control is used to contml the interaction with devicesthat transfer information via
the SBI. The data cache is a small cache used to store the most recently used
pieces of information. The trandation buffer and decode, which ascertains the
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INSTRUCTION ROM RAM TRAPS AND
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260
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L
MICROPROGRAM CONTROL
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CONSOLE MICRO
¢ INTERFACE SEQUENCER

Figure542. Block Diagram of the vax 11/780 Compuiter.
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machine ingtruction to be performed, provides the appropriate control to the
microcode machine.

The microcode machine itself is contained in the micro sequencer, the ROM
control store, and the RAM control store. The ROM control store contains the
microcode for the basic instructions of the system; this includes a comprehensive
set of variable length instructionsfor general computing, and some other functions
needed by the system. The ROM control store provides storage for 4.096 microin-
gructions. The RAM control store serves the same basic function, storing
microingtructions for system use. However, the content of the RAM control store
must be provided by the user at an appropriate time, usually when the system is
initialized. This capability of writing new information to the control memory is
often called writable control store (wCS). The WCS can be used to provide
correctionsto faulty operationsin permanent control store, or to speed up certain
often executed sequences. such as operating system primatives. Having these
functionsin wWCs allows changing them to grow with system needs or to correct
faulty operation. It aso allows users to tailor their system to enhanceits opera-
tion in a specific environment. In any case, the system operates by having the
micro sequencer supply a microcode address, and the ROM or RAM control store
supplying the micminstruction.

The microinshuctionis a 96-bit word whose format is given in Figure 5.43.
The 96 bits are broken into 30 different fields, each of which controls part of the
function of the machine. Table5.7 identifies the various fields and the elements
they control. Each microingtruction is capable of controlling the hardware of the
system to do the work required. The techniquesused are the same techniques we
have already identified. Some fields provide an address to a multiplexer function
(SVIX, EBMX. RMKX, KMX; etc.) to select one operand or source of data for a

EALU

00
JMP ]

3N 29 26 25 24 20 19 18 17 16
= E|_ MSC Jvax | Fex]| sck] cck | EBMX swx_ |
47 46 43 42 41 35 34 32
ADS|  wTcici [ Fs] sPO | PCK
63 58 57 55 54 51 50 48
KMX | suscm | QK | SGN
79 e v 76 7?7n 70 69 €6 65 64
EET BEN | ack | ALU [ sus
95 92 81 88 87 85 04 82 81 80
IBC DK | stk | Bwx | Awx

Figure543 Fedsdf vAX 11/780 Microinstructions,
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Table57. MicrocodeFieldsin VAX 111780.

Mnemonic Name Function
IMP Jump Address Addressof next microinstruction.
EALU Exponent ALU Control ALU for exponent arithmetic.
SMX SMX Select Control selection of vaue for S operand.
EBMX EBMX Select Control sdlection of vaue for EB operand.
CCK Condition Code Identify hit for condition code test.
CK
FEK
VA
MSC Miscellaneous Control variousfunctions not included elsewhere.
IEK Interrupt and Control function of interrupt logic.
Exception
PCK Address Count Control program counter and address specification.
Control
SPO Scratch Pad Control function of scratch pad area.
Operation
FS Function Select Identify function of MCT/CID bits.
MCT/CID Memory and Control bus transfers.
Control Bus
ADS Address Select Identify source of effective address.
SGN Sign Control Identify source of sign bit.
QK Q Reg Control Control action of Q register.
SI/SCM Shift Input Control action of shift network.
Control
KMX Constants Select Select source, vaue of constants.
suB Subroutine Provide control for subroutine linkage.
Control
ALU ALU Control Specify function performed by ALU.
ACF Accelerator Identify function of accelerator.
Control
BEN Branch Enable Control branching function.
RMX Reg Mux Control Specify source of operand in reg mux.
DT DaaType Identify type of data being operated on.
AMX A Mux Select Control value supplied by A Mux.
BMX B Mux Select Control value supplied by B Mux.
SHF ALU Shift Control Control action of ALU shifter.
DK D Reg Control Control action of operand in D register.
IBC Instruction Buffer Specify action of instruction buffer.

Control

specific register or function. Other fields use a single bit to identify the function
of another field (FS). The ALU bits directly control the function of the arithmetic
element in the system. The SUB bits identify the action to be taken on @ micro-
code subroutine. Each of thefields controls action to occur somewhere in the sys-
tem in each 200 nsec clock cycle.

One of the interesting techniques exemplified by this system is the selection
of the next microinstruction. The MP field of each microinstruction, which is not
multiplexed with any other function, identifies the next microinstruction to be exe-
cuted Thus, there is no requirement that successive microinstructions be located
in successive locations in microstore. The microinstructions can be located in any
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available locations in memory. If some choice of next microinstruction is
required — that is, if a conditional branch of some type is needed — thisis con-
trolled by the BEN field. The effect is to modify the address in the IMP fidd in
some predetermined fashion. For example, the JMP field can provide the most
significant portion of an address, and the least significant bits can be provided by
sign bits, processor state indicators, or other machine information. This provides
a multiway branch capability, so that the next instruction is one of 8, 16, or 32
possibleinstructions, based on the function selected by the BEN field. The multi-
way branch ability permits multiple decisions simultaneously, since more than one
bit can be used in the selection of the next microinstruction. The requirement for
this to be effectiveis that the set of instructionsthat are possible next instructions
for a specific microinstruction be. located a an appropriate address boundary in
the mircrocade  This is one of the reasons that cach microinstruction carries the
address of the next microingtruction, since placing sets of next instructions on
addressboundariesfragmentsthe available microcode memory.

The VAX 11/780 is a good example of a microcoded system, but certainly
not the only example. The technique has been used in a host of different
machines to provide a programmable control system that can be utilized in a regu-
lar system fashion.

Control System Design: Asserting ControlLines
In a Timely Fashion

This chapter has dealt with the concepts and practices involved in producing a
control system for a digital device. The device can be as simple as a counter or
as complex as a computer, but the principlesinvolved in the process are the same.
Before the design of the control system can begin, it is imperative that the data
path be defined, and that the appropriate control lines be identified. This process
must not only identify the lines to be controlled, but al so specify the assertion lev-
els required to perform the work. Armed with this information the designer can
then proceed to provide a control section which will assert the lines in an
appropriatefashion.

Once the set of signalsrequired for control of a system has been identified,
then the order of assertion and other specific information must be determined.
This process requires that the designer be familiar with the system components.
their uses, and their limitations. But the action of the control section can be
specified by utilizing system knowledge, design techniques, and desired
behavioral characteristics. This specification may take the form of a state
diagram, which is useful for direct implementationof state machines. Or it may
take the form of a flow diagram, which can provide the basis for a delay line or
shift register method of control signa implementation. The state diagram or flow
diagram can also be useful in preparing a system that utilizes microcode tech-
niques for asserting the control lines. Each of the techniques can be effectively
utilized where the system characteristicscall for behavior of one type or another.
For example, RISC machinesgenerally need extremely fast control, but being rela-
tively simple the amount of logic required for direct implementation permits ran-
dom logic in the control system. On the other hand, CISC machines often require
numerous steps and decisions to perform a specific instruction, so microcode is
very appropriate. The designer, then, has the responsibility of selecting the imple-
mentation technique that will maximizeeffective use of system resources.
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5.10. Problems

51 Consider the block diagram given in Figure 5. 1 for the data path of a com-

puter. This data path is to be used to implement a single address machine.
The following information about the machine may or may not be useful.
The add is not cascadable (no double precision adds.) The memory is fast
RAM The MAR ignores hits higher than its address space, which are
transferred to it. The only control lines you have access to are those listed
on the diagram. No initialization is needed for any of the logic. Design a
sequencer for this data path that will do SUBTRACT, LEFT-SHIFT, and
NEGATE. Use microcoding techniques. Include an RTL description of the
transfers necessary. Give alogic diagram (at a reasonablelevel) of the con-
trol section, specify the bits in the microinstruction word, and give the
microcode needed. The available microcode sequencer has the following
pins: address out, address in, JUMP-H (test input) and CONTROL-H. When
CONTROL-H is L (normal case) the instruction obtained is the next in
sequence. When CONTROL-H is H, then an conditional jump is performed,
with the address input being used as the source of address if JUMP-H is
asserted. The ALU is capable of the following operations:

Cl @© Function

0 0 F=A+B

0 1 F=Anand B
1 0 F=notB

1 1 F=AorB

52 For the single address machine shown in Figure P5.1, design a sequencer

that will do ADD or OR, using some technique other than microcoding.
Include RTL description of the transfers needed and the logic of the control
section.
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FigureRS|. Block Diagram for Single AddressMachine.
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53 Consider the controller for the finite impulse response digital filter of Sec-
tion 5.3. Implement the controller using the technique of individual delays.
How can the loop be implemented?

54 Consider the controller for the finite impulse response digital filter of Sec-
tion 5.3. Implement the controller using the shift register techrique to
develop the timing pulses. How can the loop be implemented?

55 The state machine controller shown in Figure5.27 can be used to implement
the state diagram shown in Figure 5.23. Provide the necessary additional
details, and specify the contents of the memory to create the system. That
is

a ldentify which of the address lines of the memory are provided by the
present state lines, and which are provided by external inputs.

b Identify which of the memory outputs are used for next state determina-
tion and which are used for signal generation.

c. Createatable that specifiesthe next state patterns and the signal line pat-
terns for each of the appropriate addresses.

A computer system can be a very vauable tool for this project, using a sim-
ple program to help develop the basic patterns, and an editor system to
modify the patternsas necessary.

56 Design a control system using the state machine technique for the shift and
add multiply system of Fgure 3.9. Implement the state machine with the
multiplexer method (like Figure 5.13). and then do the design with random
logic for next state determination. Compare the two implementations based
on board space, power consumption, and ease of implementation.

57 Design a controller for the Booth's agorithm multiplier of Figure3.14. Use
a state machine implementation mechanism.

58 Consider the block diagram of a portion of the control system for a unit that
utilizes a microcoded organization. The contents of the microcode memory
for the original organization are as follows:

addr contents d addr

0 0100100011111010011101100011010
1 1011011100011010010010010001001
2 0100100011111010011101100011010
3 1101001000100100010010001000010
4 1011011100011010010010010001001
5 0010100100100101001001001001000
6 0100100011111010011101100011010
7 1101001000100100010010001000010
8 0011100100101010001010010001001
9 101101110001 1010010010010001001

10 1001001001010010010100100101000
11 1101001000100100010010001000010
12 0100100011111010011101100011010
13 1011011100011010010010010001001
14 1101001000100100010010001000010
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Figure P58. Alternative Microcode Organizations.
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511

512

513

Give the contents of Memory 1 and Memory 2 for the modified organiza-
tion. What are the advantages, if any, of the second organization?

Design a state machine controller for the divider shown in Figure 3.23. (See
also Appendix B.) Use a memory for the next state logic, and specify the
contents of the memory for dl of the appropriatelocations.

Consider the horizontally organized microcode system of Figure 5.40;
details of this implementation are shown in Appendix B. Some microcode
appearsin Table 5.5. Write microcode to implement a JUMP instruction, a
JUMP TO SUBROUTINE instruction, and a RETURN instruction. State what-
ever assumptionsthat you need to make.

Modify the microcode shown in Table 5.5 so that the fetch portion of the
microcode checks for the existence of an interrupt. Include microcode to
handle the interrupt. State whatever assumptions you need to make.

Consider the verticaly organized microcode system of Figure 5.41. Some
of the microcode appears in Table 5.6. Write microcode for a memory-to-
memory add instruction with the format ADD <addrl> <addr2>. Assume
that the two addresses (<addrl> and <addr2>) are stored in locations
directly following the instruction in program memory.

Obtain data sheets for the devices of Figure 5.40 (see also Appendix B) and
determine the minimum cycle time for the data path and the minimum cycle
time for the control path.
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514 The diagram shown in Figure P5.14 is a single bus system that can be used
to implement a simple 16-bit machine. Using horizontal microcode tech-
niques, create microcode to perform the ADD instruction with possibilities
for register direct, register indirect, register indirect autoincrement (post

incremient), and register indirect auto-decrement (predecrement). That is:

a determinethe contentsof the microinstruction register

b. complete the naming for the control signalsof the system
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5.16

517

C. identify the work needed (RTL) to perform the ADD instruction
d. give the microcode bit patterns needed to accomplish the work

State any assumptions needed to compl ete the specification.

The diagram shown in Figure P5.14 can be used to implement a 16-bit
machine. Using vertical microcode techniques, create microcode to perform
aNEGATE instruction, an INCREMENT ingtruction, and a CLEAR instruction.
To accomplishthis:

a determine which control lines can be activated by a decoded fidd in a
microinstruction word, and which lines can share afield

b. specify the contentsof the microinstruction register

¢. complete the naming for the control signalsof the sysem

d. givetheRTL needed to perform the instructions

e give the microcode bit patterns needed to perform the work of the RTL
specified

State any assumptionsneeded to complete the specification.

For the data path shown in Figure P5.14, implement with horizontal micro-
code techniques a JUMP SUBROUTINE instructionand a RETURN (from sub-
routine) instruction. Include with the answer the following information:

a theformat of the microinstruction

b. the proper naming of the control signals

C. theRTL for the instructions

d. the microcodebit patternsthat will implement the instructions

Assume that R15 of the register set is designated as the stack pointer. Also
assume that the memory for this problem is dow RAM, and that once the
MAR has been set, three cycles are needed to write/read the memory.

Repeat Problem 5.16, using vertical microcode techniques. How can the bus
destination signals be created in a manner that will prevent glitches from
occurring? For the system of Figure P5.14, the following information may
be useful:

The memory write enable, chip select, and output enable are all asserted
low.

The program counter can be loaded or incremented; both actions occur on
the low-to-high transition of the control signal.

When one register is identified by an instruction, the register address mux
will feed the correct lines to the general purpose registers.

When two registers are specified by an instruction, the register address
mux Will feed the pattern identifying the first register to the general
purpose registers unless SECOND-REG-H is asserted, at which point
the pattern identifying the second register will be directed to the gen-
eral purpose registers.

The arithmetic unit operates according to the following table:
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511

S1 O Function
0 0 F = A plus B
0 | F=Anand B
1 0 F=B

| 1 F=AorB

The CONST field allows the controller to place a known value into the Sys-
tem.
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