
' Control System Design

The design of a computer system, like that of all digital systems, requires both
data manipulation capabilities (logical units, adders, multipliers, etc.) and control
capabilities. The data manipulation elements form the data path of the machine,
while controlling the flow- of data on that data path is the responsibility of the
control section. The design of the data path elements and the instructions that
identify the work to be done on the data paths have been the subjects of the
preceding chapters. In this chapter we will deal with methods used to control the
flow of information within a computer. Our intention is not to provide an in-
depth discussion of sequential design techniques; a number of excellent texts pro-
vide that material [Mano79. FletSO, McC186, Bree891. Our intention is to provide
some insights into different ways in which those methods can be applied in the
design of a control section of a computcr.

The control system of a computer is basically a sequential system that
implements the fetch-decode-execute function of instruction execution. Since it is
a sequential system, it can be designed using the same techniques used to design
counters, controllers, or any of a wide variety of digital systems. In this chapter,
we examine different techniques for implementing sequential systems, and apply
those techniques to the control of computational elements. Thus, our first task is
to review some of the concepts used in sequential design.

The application of sequential design techniques will result in a control sys-
tem that activates the appropriate clock lines, enables, and interface signals to
accomplish the work of the computer system. .However, before the control system
can be specified and implemented, it is necessary to identify the appropriate
clocks, enables, and other signals used in the system. Therefore, the first require-
ment of a computer system design is to develop a detailed data path block
diagram. This diagram must identify the control lines that can be used to manipu-
late data in the system. And with this diagram and the definition of the instruc-
tions to perform. RTL descriptions of the data transfers needed can be developed.

Thus. we will look again at the problem of data path definition and RTL
specifications, and see how they are used in the process of control system design.

The designer of a control system must know what signals are available for
the control and manipulation of the data in the system; these control lines are
identified by the detailed block diagram. In addition, the order of operations must
be. specified, and this information comes from the RTL descriptions of the work to
be done. With this global view of the system, a designer can select the most
appropriate sequential design technique and create a system that will assert the
control lines to do the work. We will look at different methods for implementing
the control systems, providing examples of each.

5.1. Elements of Sequential Design: A Review

The circuits of the preceding chapters are all classified as combinational circuits:
the outputs are functions only of the inputs. These can be modeled as shown in
Figure 5.1; the outputs will change whenever the inputs change. This model
applies to a variety of devices and circuits: random logic, ALUs ('181, '381). mul-
tiplexers ('151, '157). decoders ('138, '154). memories, PLAs, and the like. Nor-
r.~ally we like to think that these circuits are perfect, that the outputs will change
instantaneously to thcir new value whenevcr thc inputs change. However, associ-
ated with real devices are real delays, and the outputs will follow the inputs after
some finite time delay. Some outputs may change during the finite time delay.
and resume their former values after the delay period has passed. This results in
glitches that can cause problems in circuits, and care must be taken to prevent the
glitches from occurring or to ascertain that, if glitches do occur, they will not
cause problems. Thus, a designer must be aware of the timing restrictions in the
process of creating the data path and the transfers represented by the RTL state-
ments.

If a system is to have outputs that reflect not only the current set of inputs,
but the history of the system as well, then a different model is necessary. An
addition to the model of Figure 5.1 is shown in the model of Figure 5.2. Here the
outputs are not only a function of the current inputs, but also the past history of
the system as well. This history is reflected in the "state" of the machine, which
is the value stored in the collection of memory elements within the system. If
there are N memory elements, then there are 2N possible states that the system can
assume. Hence, systems with more than a few flip-flops are intractable; a system
with 20 bits of memory arranged in registers or other flip-flops would have more
than a million possible states.

Inputs

Figure 5.1. Block Diagram of Simple
combinational Circuit.

Chap. 5: Control System Design

State
Register

Figure 5.2. Simple Block Diagram of
Sequential Circuit.

Figure 5.3. Seqtlenlial Circuit: A Moore Machine.

The system depicted in Figure 5.2, where the outputs are functions of both
the current state and the inputs, is called a Mealy machine. This kind of machine
is useful in certain circumstances, but can cause problems because of the lack of
synchronization between inputs and states. That is, the outputs may be of varying
lengths, since the inputs change asynchronously with respect to the states of the
machine. A different, slightly more restricted, model for a sequential system is
shown in Figure 5.3. This type of system is called a Moore machine. Here the
outputs are functions of the present state only. Inputs then influence the outputs
only in that they can affect the next state of the sequential machine, but the out-
puts are not directly functions of the inputs. This model, and variations of it,
represent the controllers that we will consider for the control sections of comput-
ers and other digital systems. The outputs of the sequential machine will be the
control signals needed to manipulate data and move it within the system. The
inputs required to specify the desired sequence of steps consist of synchronization
flags, status bits, test conditions, and other information that influences the -
behavior of the system. The designer's challenge, then, is to design a sequential
system that will assert the outputs in an appropriate manner to accomplish the
work of the system. However, before the control system can be defined and the
sequence of outputs specified, the data path must be specified and the control sig-
nals on the data path identified.

5.2. Data Path Formulation

The formulation of the data path for a cornputcr or other digital system is a com-
plex task that is influenced by many factors. The foremost requirement is that the
system be able to perform the action required by the underlying task. Just how
that task is accomplished is a designer's choice; the decisions made by the
designer reflect his understanding of the task and the requirements imposed by

Chap. 5: Control System Design 195

system constraints. Consider, for example, the lBM System 360/370 family of
computer systems. This was one of the first families of computers in which the
different models were identified in the beginning, rather than having different
models announced as permitted by customer demand and marketing strategy. The
360 family was set up to cover a variety of performance capabilities and economic
ranges. Nevertheless, a program executed on different members of this family
should arrive at the same answer on each machine. The instruction set architec-
ture of the system appears the same to a programmer regardless of the model on
which the program runs. However, the techniques used to implement the opera-
tions vary from model to model. The number of data paths, the arithmetic units,
the memory interactions, and the control system for each model are configured to
match different sets of economic and performance constraints. The same idea will
be true for all digital systems: the parts used, the data paths provided, and the
interfacing methods will be dictated by the intended use of the system. Some of
the constraints and their implications are listed below:

Economic: How expensive are the components used to build the system? This
includes not only the integrated circuits, but other components as well, such as
sockets, connectors, display elements, wire, printed circuit boards, and so on, as
well as manufacturing costs.

Interface requirements: Many devices are specifically designed to interface to
TTL components. However, other technologies can require a different set of
voltages and currents for information exchange. This also applies to the proto-
cols required for the exchange.

Speed; A variety of questions must be addressed. One of the first is to choose
the technology in which the system will be implemented. Lower speed require-
ments can utilize some MOS technologies that conserve energy and do not have
fast cycle times. Higher speed technologies, such as ECL and GaAs, require
careful adherence to design constraints. However, another speed issue is the
extent of the use of concurrency within the system, from pipeline techniques to
multiple data paths. Each of these options carries with it a set of constraints
that identify its range of usefulness.

Power: The amount of power that a system utilizes may be a factor in the sys-
tem. If the unit is to operate on battery power for extended periods of time, or
be limited in the amount of available power, then the designer must select com-
ponents and techniques accordingly.

Dynamic range: Arithmetic requirements are often mandated by the intended
applications of the system and the allowable signal to noise ratio. A system
may be able to satisfy the data representation requirements with integer or fixed
point arithmetic of a certain number of bits; or the required dynamic range may
indicate that floating point operations are necessary. The data paths and arith-
metic capabilities must match system needs.

Flexibiliry: Many digital systems are created not to solve a single problem, but
to provide a device that can be used in a variety of applications to achieve a
reasonable solution. Therefore, the system must be flexible enough to be used
easily in any of a number of target areas.

Maintainability: Building a computer system. or other digital device, to satisfy
a particular need is only part of the overall problem. Because of device
failures, power surges, or other problems the system will at some time cease to
function properly. One of the desirable characteristics for digital systems is

Chap. 5: Control System Design

that they be maintainable. That is, the design and the implementation be done
in such a way that devices and subsystems that are not functioning properly can
be identified and easily replaced.

Environment: This nebulous heading is used here to include a variety of other
types of restrictions. If the system is satellite-based, it must not only conserve
power used, but it also may have a radiation hardening requirement. If the unit
is to operate in an airplane, it may have vibration tolerance requirements,
extended temperature requirements, or other restrictions.

Acceptable limits for these and other requirements are identified by the
specifications for the system to be designed. The designer must utilize the
ingenuity that he has to propose a design that will meet the specifications of the
system. There are many different approaches to solving a given problem; indeed,
vastly different data path solutions may be proposed which satisfy the require-
ments of the system. These approaches may use single bus implementations, mul-
tiple bus implementations, point to point techniques, or any of a variety of
approaches. In any case, the system must satisfy the requirements placed upon it
by its application area and intended use.

The designer must select the data path components from the pool of avail-
able parts in the target technology, arrange the components and the intercomec-
tions so as to meet the system requirements, and identify the basic transfers and
manipulations required to perform the necessary work. We wish to make two
points. First, the design of the data path is basically independent of the control
design. There may be factors in the intended control design that influence the
data path formation, and there may be elements of the data path that bear on the
control design, but basically they are two different problems. Second, having
identified the elements in the data path, a designer must then identify the signals
that will control the flow of information within the data path. It is the responsibil-
ity of the control section to assert the signals in such a way that the appropriate
work is accomplished, and, once the signals are identified, the design of the con-
trol section can proceed to achieve that objective.

To reiterate the points made above, the designer must:

First select an appropriate technology and a set of components in that technol-
ogy to provide for the needs of the system.

Interconnect the components in such a way that the work of the system can be
accomplished.

Then, using a register transfer language or other means of specifying the action
to take place, identify the data transfers and arithmetic required by the system.

Identify the control signals required to accomplish the work of the system.

When the data path has been defined to this level, the design of the control por-
tion of the circuitry can proceed.

This process is best illustrated by an example. The example chosen here,
and the other examples in this chapter, are contrived to illustrate specific points,
and do not necessarily reflect the "trickiest" way to accomplish some work. But
once the principles have been identified, the designer can then proceed to apply
them to other designs. The following example, like the other examples in this
chapter, is more extensive than those in earlier chapters; for instance, Section 5.7
consists entirely of two different implementation techniques applied to the same

Chap. 5: Control System Design 1 Pi

machine. Therefore, the examples here are interwoven with the text, not separated
as a short example to illustrate a single point.

Our first example of a digital system is the calculation of an inner dot pro-
duct. This is used repeatedly in mathematics for doing matrix manipulations; it is
also used in digital signal processing for transversal filters. The example is to
design a finite impulse response (FIR) d i g i s filter with 25 coefficients. The equa- -. - - -.---...--. ----^-

tion for this calculation is:
24

output = C S, x C,
i=O..-. _.. __

where S, represents samples of an input stream and Ci represents constant
coefficients. We will assume that the system is to stand alone; that is, that the
system will contain an A D converter to provide samples and a D/A converter to
accept outputs. We will also assume that the coefficients are known and constant.
The data manipulations involved in the FIR process are shown in Figure 5.4. The
input is sent to a delay network, which saves 25 values of the data stream. Each
of the delayed values forms one of the Si of the above equation. Each sample is
multiplied by its corresponding coefficient (C,), and all of the resulting values are
summed to form the final result. The system architecddesigner has the task of
implementing the data manipulations represented by the FIR equation in real
hardware.

The network shown in Figure 5.4 could be implemented directly in
hardware. However, that would require 25 separate multipliers and some mechan-
ism for summing 25 results in parallel. A more conservative solution is to build a
system around a multiply/accumulator (MAC), a device that will perform a multi-
ply and an add in each clock cycle. These modules have been available for
several years and are applicable to a variety of different calculations; the FIR
example is an ideal use for this module, since the chip performs all of the arith-
metic needed to obtain the result. To present the appropriate values to the MAC,
we will utilize memories to store the data and the coefficients. Thus, our problem
will be to design a system that will accept a sample, store it in a memory, and
then perform the calculations identified by the above equation using the current
sample and the previous 24 samples.

i.

Output

Figure 5.4. Data Manipulations Involved in Inner Dot Product.

Chap. 5: Control System Design

A simple block diagram of a piece of hardware to do this is shown in Figure
5.5. The MAC can be connected to the other elements of the system in a variety
of ways to satisfy different system requirements. The solution shown is capable
of a fairly high computation rate, and yet is simple in its implementation. The
elements of the system, their names and their responsibilities are as follows:

Coefficient memory: (C-MEM [k]) This memory contains the constants (Ci)
needed by the algorithm. The memory chosen here is a small PROM (pro-
grammable read only memory).

Coefficient memory address register: (C-ADR) This is a counter used to iden-
tify the current coefficient. It must start at zero for each iteration and incre-
ment through the coefficient numbers, which are used directly as coefficient
addresses.

Sample memory: (S-MEM [k]) The sample memory is used to store the current
sample and the previous 24; actually the memory is made of a number of
RAMS, so 32 values are stored, but only 25 used for any single calculation.

Sample memory address register: (S-ADR) This counter is initialized to the
address of the current sample; it is then incremented to point at the preceding
samples in order.

lnitial snnple address rrgisrcr: (1-ACR) This q i s t e r identierr thc s'-.titlg
point of the algorithm for each pass. The correct starting point for the current
iteration is one less than the starting point for the previous iteration. Thus, this
counter will decrement once each pass.

AID converter: (ADIN) This module provides the new data for each iteration.
We assume that the time at which conversion begins is controlled by an

Multiplier1
Accumulator

Out Reg

Converter

Analog Output

Figure 5.5. Simple Data Path Block Diagram for Finite Impulse
Response System.

Chap. 5: Control System Design

external source. When new data is available, a ready Rag will be asserted.
Thus, testing this ready Rag will identify when the algorithm should be per-
formed.

DIA converter: (DAOUT) This module accepts the output of each interaction
and converts it to an appropriate analog value.

Output register: (OUT) This is a register that isolates the DIA converter from
the values on the output of the MAC during the calculation process.

Multiplierlaccumulator module: This module has the responsibility for doing
the arithmetic needed by the algorithm. It will do each multiply, then add the
value to a running sum. There are three registers internal to the system, two
input registers (X, Y) and an output register (P).

When the designer has arrived at a data path representation such as that
shown in Figure 5.5, the next step is to identify the work to take place. As
identified in the formula defining the calculation, 25 coefficients will be multiplied
by 25 data values, and the results of the multiplies summed to the result. Assum-
ing that the RAM and PROM (for the data and coefficient storage) both contain 32
locations, these memories can be visualized as shown in Figure 5.6. Part a shows
the coefficient storage. These values are always used in order, from location 0 to
location 24. Thus, at the beginning of each iteration the address register for the
coefficients will be set to zero. Figure 5.6(b) indicates that the first value received
will be placed in location 0 of the RAM, and then the initial sample address regis-
ter will be decremented. Thus, the next location to be filled by a sample value
will be location 31. Figure 5.6(c) shows the contents of the RAM after 33 samples
have been received.'The 33d sample (Sample 32) overwrites the first sample
(Sample 0). The output of the FIR calculation uses the 25 most recent samples,
also identified in part c. The 25 most recent samples utilize a different portion of
the RAM for each iteration. The samples used for the 41'' iteration (Sample 40
through Sample 16) are identified in of Figure 5.6(d). Once the basic algorithm is
understood, we can specify the work to be done with RTL statements:

start: if (ADIN not ready) goto start

0 C-ADR
I-ADR d KADR

ADIN S MEM { S-ADR] d LADR

S-MEM [S-ADR 1 X
C-MEM [C-ADR] Y

S-ADR + I S-ADR
C-ADR + I E C-ADR

i-MEht[Siti; 1
C-MEM [C-ADR] Y

S-ADR + I S-ADR
C-ADR + I C-ADR

Check input data.

Clear coefficient address.
Load sample address.

Data to sample memory.
Decrement initial address.

Load sample to X reg.
Load coefficient to Y reg.
Increment sample address.
Increment coefficient address.

Load product register.
Load sample to X reg.
Load coefficient to Y reg.
Increment sample address.
Increment coefficient address.

Chap. 5: Control System Design

P + X X Y P
S-MEM [S-ADK] X F C-MEM [C-ADR] Y

S-ADR + I S ADR
C-ADR + I I; LADR

i f (not done) goto over

P -t OUT

goto start

Add product into P register.
Load sample to X reg.
Load coefficient to Y reg.
Increment sample address.
I~icrement coefficient address.

Repeat for all samples.
Work is done when C-ADDR is 25.

Update output value.

Start over

~ i r s i sample
stored at
location 0

(oth sample)

Initial Sample
Address Register

decrements to
point to location 31

Coefficients
stored in first
25 locations of
PROM

Samples start
at location 0
of RAM

Each new salrple
stored at lozat~on
numbered one
lower than
previous sample

- \

32" dlS1 I 81h
*" 'p

Sample Sample Sample Sample Sample
25 values used

in summatlon after
accepting Sample 32

0 31

(4 Summation calculation
done with 25 most recent

accepting Sample 40

Figure 5.6. Coefficient and Data Storage for FIR Example.

Chap. 5: Control System Design

This identifies the work needed to perform the appropriate calculations, as well as
the possible parallelism of simultaneous events. The system waits for new data to
become available (ADIN ready), at which point the data processing begins. The
first step is to clear the coefficient address and load the sample address register
from the initial sample address register. These two events can happen simultane-
ously. Then, the input value is loaded into the sample memory (at the address
just loaded into C-ADDR from I-ADDR), and the initial sample address is decre-
mented. Again, these two events can occur at the same time. The next step is to
load Lhe first sample and the first coefficient into the X and Y registers of the
MAC, as well as increment the sample address register and the coefficient address
register. The next group of transfers specify loading a product into P, a new sam-
ple into X, a new coefficient into Y, and incrementing the address registers. At
this point a loop is entered, which adds the new product to the running sum, loads
a new sample and a new coefficient, and increments the address registers. This
continues until the process is done, which will occur when the final sample-
coefficient product has been added to the running sum and is available at the
inputs of the output register. This condition is checked simply by counting the
number of operations, and when the result is ready moving on to the next transac-
tion. The final transfer moves the newly calculated value to the output register
(OUT), at which point control returns to the beginning to start over again.

If all of the transfers in the RTL occur instantaneously, then there is no
problem with the system. However, in real systems each of the actions identified
in the RTL takes a nonzero amount of time to accomplish. One of the challenges
of the designer is to create a control section that will manipulate the signals in
such a way that the transfers maintain the appearance of the simultaneity specified
in the RTL. To prepare to design such a control section, we will create a state
diagram that identifies the action of the RTL. We will see that this state diagram
can be used to directly implement an appropriate control section. This state
diagram is shown in Figure 5.7. It is called a preliminary state diagram, because
it will be modified slightly before the actual implementation of the control sec-
tion. The states that do not specify any work are added for timing purposes, and

' we will discuss them in connection with the actual implementation.
When the RTL description of operations and the state diagram are ready, the

designer must complete the details of the data path block diagram by choosing the
exact parts to be used in the system and identifying the control signals required on
those parts to perform the work. Figure 5.8 shows the system of Figure 5.5 with
the parts specified and the control signals identified. Note that, although the same
parts are used both for the coefficient memory address register and the sample
memory address register, the control lines needed are not the same. Both address
registers need clocks, so that signal is shown for both blocks. However, the
coefficient MAR needs to be cleared but not loaded, and the sample MAR needs to
be loaded but not cleared. These differences are evident in the control signals
included in Figure 5.8. Note also that control lines of the components that do not
need to be manipulated during the computation are not identified in the diagram.
It is assumed that the designer has studied the specifications of the components
and made provisions for the other signals. Some of these will be grounded, others
tied to a high level, and so on.

To summarize, the creation of the data path can be done in a manner that
is relatively independent from the choice of a control mechanism for a digital
system. The designer must first become familiar with the work required of the
system. This includes the operations needed, the limitations of the data represen-
tation and manipulation methods, the order of events, and other considerations.

Chap. 5: Control System Design

NO DATA AVAILABLE

@A AVAILABLE

<=> SAMPLE MEMORY

Data is avai1ab:e
when the DATA
signal is asserted

LOAD SAMPLE INTO X
LOAD COEF INTO Y
INCREMENT S-ADR

LOAD X Y INTO P
LOAD COEF INTO Y

LOAD SAMPLE INTO X
INCREMENT S-ADR
INCREMENT C-ADR

LOAD SAMPLE INTO X
LOAD COEF INTO Y
INCREMENT S-ADR

DONE is asserted
when work is

completed, which will
occur when C-ADR

reaches the limit (shown
IDLE as LIMIT in Figure 5.12)

Figure 5.7. Preliminary State Diagram for Finite Impulse Response System.

With the system and device specifications in mind, the designer then organizes
appropriate devices in such a way that the necessary data manipulations can be
performed and the system constraints can be satisfied. The flow of information

Chap. 5: Control System Design 203

I ADR CK-H
I

- MULTIPLIER/
p a x ACCUMULATOR

ACC-H
ID17423

S-MEN-WE-L
t

OUT-CLK-H

I t

ANALOG

INPUT
I N

Figure 5.8. Detailed Data Path Block Diagram for Finite Impulse Response System.

within the system is then identified with register transfer specifications, state
diagrams, and any other design aid that can provide insight into the operation of
the system. Finally, the components are identified and the control lines of those
components identified so that the detailed design of the control section can be per-
formed.

XIN YIN

A/D
CONVERTER IXIT

Chap. 5: Control System Design

' -
L ADDRESS
a

RAM
IWUT

27LS07

WTWT

ADII1ESS

PROM
27LS19

WTPUT

5.3. A Simple State Machine Controller

Once the problem is understood to the point that a detailed data path block
diagram and a preliminary state diagram are available, then the design of the con-
trol section can proceed. The classical approach would begin by creating a
detailed state diagram, then a detailed enumeration of all possible state and input
combinations. This would be translated into flip-flop excitation tables, state
tables, next state and output truth tables, and logical equations for the appropriate
signals. These would then be implemented with random logic, and, if all of the
steps were correctly followed, the circuit should do the necessary control work.
We present here a method that follows the same basic steps as the classical
approach, but that is relatively simple to understand and implement. First, the
state diagram is expanded as necessary to include the appropriate assertion levels
for the control lines of the detailed data path block diagram. Then the system is
mapped directly onto the Moore model of Figure 5.3. The simplicity of the
implementation has some advantages and disadvantages, as we shall see.

A state diagram as shown in Figure 5.7 indicates the order in which events
should occur to produce the desired results, but the details necessary for the con-
trol signals are missing. The designer must be sufficiently familiar with the parts
being used so that the assertion of the control lines will be handled correctly. We
now examine the primitive state diagram and the detailed data path block diagram
in order to derive a correct and complete state diagram.

One observation concerning the state diagram of Figure 5.7 is that there are
nine states in it, and to represent all of the states would require 4 bits of state
information. One of the first steps of a design procedure is to attempt to reduce
the number of states, if feasible, so that the number of bits required to represent
the state is at a minimum. Two states in the state diagram appear to be unused,
since no work is called out in these states. These states are useful, however, since
they play a part in forming the control signals. Asserting signals in some states
and not in others results in levels and edges that do the actual work of the system.
A designer must visualize the desired behavior of the signals and create state
sequences to produce that behavior.

In state diagrams we will identify signals to be asserted by naming them in
the states in which they are active. The asserted level of the signal is identified
by the use of polarized mnemonics included with the signal name. This is
demonstrated by the segment of a state diagram shown in Figure 5.9. Five dif-
ferent states are indicated in the figure, and the system moves from state to state
without any branching. Each state time corresponds to a single cycle of the sys-
tem clock (SYS-CLK-H). In this fragment of a state diagram a single signal is
called for in three diffcrcnt states (C-ACSCI< I:), and in each of thosc stalcs iL
will be asserted, as shown by the waveform included in the figure. This signal is
included on the detailed block diagram of the FIR filter implementatio

n

for clock.
ing (incrementing) the coefficient address register. However, even though this
signal is asserted in three different states in Figure 5.9, the register would only be
incremented by two. The implementation calls for a ccunter that is activated by a
rising edge on the clock line, and as seen by the waveform of the figure, there are
only two rising edges on C-ADR-CK-H. Thus, a designer must be aware of the
shape of signal waveforms which will result from specifying assertion of the sig-
nals in a state diagram. A signal can be asserted for a single state time
(C-ADR-CK-H in State 2). or a signal can last for many clock cycles
(C-ADR-CK-H in States 4 and 5). We will later examine additional methods for
creating control signals with state machines.

Chap. 5: Control System Deslgn

As shown by the signal waveform of Figure 5.9, removing the "empty"
states in the preliminary state diagram would result in an incorrect function for the
system. The states cause the signals that control the clocking of the address regis-
ters and the loading of the registers of the DAC to become unasserted, so that the
proper edges are created when the signals are asserted in the following states.
Thus, these states are needed, and another method must be used to by to reduce
the total number of states in the state diagram. ,

The observation we now make is that there is some redundancy in the state
diagram: if there is a method of accomplishing "LOAD PRODUCT INTO Z" and
"ADD PRODUCT INTO Z" with the same signal, then two of the states can be
combined. A careful examination of the specifications for the multiplied
accumulator indicates that the function of the PCLK pin is determined by the level
of the ACC line at the time that the X and Y registers are loaded. Thus, the
desired behavior of the circuit will be obtained if the ACC line is low for the load-
ing of the first values into X and Y, and high thereafter. This will allow combin-
ing of the appropriate states from the initial state diagram.

A detailed state diagram can now be created by identifying the desired
behavior from the initial state diagram and specifying the signal assertions which

State identifier

Signal to be asserted

State 2 +/+ State 3 +/+ State 4 State 5 +/+ State 6

Figure 5.9. State Diagram Segment with Signal Assertion.

Chap. 5: Control System Design

will cause llial bzha\k)r. Thc new statc dizgr::::: 1.: given in Figure 5.10, ai~d we
will now explain in detail the signal assertions ~denlificd tiwe. Two signals
identified in Figure 5.10 are controlled by SET-RESET flip-flops to allow one
behavior in one portion of the state diagram and another in a different portion of
the state diagram. These signals are the S-ADRLD-L line and the ACC-H line.
The S-ADR-LD-L line is asserted by a signal in State 0 (SET-SA-LD-L) to allow

C ADR CLR-L
S A D R ~ C K - H

S MEM WE-L

CLR-Kcc-L
CLR-SA-LD-L

IDLE

Figure 5.10. Detailed State Diagram for FIR Filter.

Chap. 5: Control System Design

loading of the sample address register when its clock line is asserted in State 1. It
is reset in State 2 (by CLR-SALD-L) to allow the address to increment when the
clock line is asserted later. The ACC-H line is cleared in State 2 (by CLR-ACC-L)
to set up the load of the product register. It is set in State 4 (by SET-ACC-L) to
allow accumulation of results after the initial product load. We now consider
each of the states, and the signal assertions needed for the process:

State 0 is the idle state; the SET-SA-LD-L signal is asserted to set up conditions
for loading the sample address register, which will be accomplished in State 1.

State 1 should clear the coefficient address register and load the sample address
register from the initial address register. The clear of the coefficient address
register is accomplished by asserting C-ADR-CLR-L. The loading of the sam-
ple address register requires that the sample address load line be asserted, and
then the clock line is asserted. The load was asserted in State 0; the clock is
asserted in this state.

State 2 causes three things to happen. The S-MEM-WE-L line is asserted to
write the sample into the sample memory (the appropriate address was loaded
in State I). The initial address register is decremented by asserting
1-ADR-CK-H. And the product load condition is set up by asserting
CLR-ACC-L.

State 3 causes load of the sample (X-CLK-H) and the coefficient (Y-CLK-H)
into the MAC, then increments the two addresses (S-ADR-CK-H, C-ADR-CK-
H).
State 4 sets up the accumulate condition for the product register in the
multiplier/accumulator chip by asserting SET-ACC-L.

State 5 is where all of the work is done in steady state. The first time the state
is entered, the assertion of P-CLK-H causes the product register to be loaded
with X x Y. Subsequent assertions of P-CLK-H load the product register with
X x Y + P. Samples and coefficients are loaded by asserting X-CLK-H and
Y-CLK-H. The addresses are incremented by asserting S-ADR-CK-H and
C-ADR-CK-H. The net result is that values are loaded and addresses incre-
mented to look at the next values. The use of positive edge triggered devices
assures that the current values are loaded before they change; the change will
occur some time later because of propagation delays in the address registers
and the memories themselves.

State 6 causes the output register to be filled by asserting OUT-CLK-H.

When the state numbers have been assigned to the state diagram, we are
ready to map the controller onto the Moore machine. We will do this as shown in
Figure 5.1 1. The present state register holds the current state of the system. The
next state logic looks at the present state and the inputs and selects the next state.
As shown in the figure, the logic blocks in the next state logic are multiplexers;
the inputs to the multiplexers are chosen to select the correct next state from the
current state. So the outputs of the multiplexers can be specified as shown in
Table 5.1. The two signals included in the table have not yet been identified.
The first is DATA-H, which is a flag from the AID converter identifying that we
have new data to process. A possible arrangement for this flag is shown in Figure
5.12(a). Here the end of conversion signal from the A/D converter causes a flip-
flop to be set; the flip-flop is cleared by the same signal that clears the coefficient
address. The second signal is WNE-H, which is asserted when the required
number of iterations have been completed. We could create a new counter for

Chap. 5: Control System Design

Inputs-

I I Present Output logic
State Decodes

Next state logic Register Present state

Figure 5.11. Implementation of Control System for RR Filter.

Table 5.1. Next State Multiplexer Specifications.
MUX 2 MUX I M U X 0

Control
Lines

State 0 0 0 DATA-H

State 1 0 1 0

State 2 0 1 1

State 3 I 0 0

State 4 1 0 1

State 5 1 DONE-H . 0

State 6 0 0 0

this, but that counter would duplicate the numbers used as the coefficient
addresses. Therefore, Figure 5.12(b) shows a.comparator connected to generate a
DONE-H signal using the numbers available from the coefficient address.

The entries in Table 5.1 specify the inputs needed for the multiplexers for
the state machine. The resulting circuit is shown in Figure 5.13. Figure 5.13(a)
shows the present state register and the next state circuitry; Figure 5.13(b) shows
the decode of the present state register to generate the necessary control signals.

Several observations should be made at this point. The first is that the
method described above is simple and direct, and easily applicable to state
machines with up to 32states. Larger state machines have been constructed using
this method, but the number of parts involved becomes unwieldy. The simplicity
of the technique allows ideas to be tested quickly; changes are easily made by
moving a few wires on the inputs of the multiplexers. The basic feedback
mechanism need not be disturbed. This ease of modification allows the circuit to
be quickly changed to conform to the needs of the system. This basic system
allows different design ideas to be implemented and and tried with a minimal
investment of time and effort.

One of the tasks required when the implementation has been completed is to
check out the system to verify that the unit functions correctly and that the signals
are controlled in an appropriate manner. The checkout process must identify and

Chap. 5: Control System Design 209

Figure 5.12. Control Signals for the State Machine.

H I

DATA-H

remedy any errors which cause improper assertion sequences for the control sig-
nals. Generally errors will fall into one of two categories: either the system has
wiring errors and the behavior does not follow the state diagram, or the imple-
mentation is correct but the state diagram is flawed because the designer did not
thoroughly understand the system requirements. In either of these cases,
modifications to a system designed in the method described above can be made
easily, and the system can then be completed.

A second observation concerns the synchronization of input signals with the
state machine. Figure 5.13(a) shows that the DATA-H signal is not directly fed
into the multiplexers, but that it is first synchronized with the system by sending it
through a buffer register that is clocked with the system clock. In the example,
the buffer register is the same device used as the present state register, since the
device is not entirely utilized. But what is required is keeping the input synchro-
nous with the system clock. If this provision is not made, then the inputs may
change in a manner such that, when the system clock does occur, that the next
state is changing and the result is an illegal state transition. If the inputs are not
synchronized, the system will fail when changes on the input lines occur at the
same time that the present state register is being clocked. Note also that the
DONE-H signal is not buffered by a register. The reason for this is that the DONE
signal changes synchronously with the system clock, and hence does not need the
effect of the register.

Another observation deals with the generation of the output signals. As
shown in Figure 5.13(b), the present state is decoded to generate the appropriate
signals for the system. Generally our concept is that as the system proceeds
through the states identified by the state diagram, the lines of the decoder will
become asserted at precisely the right time. However, since real devices contain
real delays, and the delays can cause glitches, provisions must be made for the
correct opelation of the system. If the signals being activated are level sensitive,

END-OF-CONU-H
->ax

Chap. 5: Control System Design

0

C-ADR-CLR-L

74ALs74

an P W *

PRESENT-STATE (2: 0) -H

DONE-H

SYSTEM-CLOCK-H 1-1

Figure 5.13(a). Present and Next State Logic for Control System.

then a glitch will not cause problems. However, if the signals are edge sensitive,
as all of the clocks in our example are, then glitches on the control lines can cause
problems. Figure 5.14(a) shows a decoder set up to demonstratc a number of pos-
sible combinations.

The problem of glitches on output lines is illustrated in Figure 5.14. The
control line which is used in different ways in the example is the enable line of
the decoder. If the decoder behaves as a perfect decoder, and no glitches occur on
the output lines, then behavior similar to the waveform of Figure 5.7 can be
obtained by always enabling the decoder. Figure 5.14(b) shows the results when

Chap. 5: Control System Design 21 1

HI Decoder
7 -

STATES-L

STATE3-L
a S-MEM-WE-L

C-ADR-CLR-L
IDLE-L

PRESENT-STATE(2:OI-H

IDLE-L

SET-ACC-L 1 ACC-H

STATES-L
STATES-L

C-ADR-CK-H

STATE3-L
STATES-L

V-CLK-H

STATES-L P-CLK-H

OUT-CLK-L OUT-CLK-H

Figure 5.13(b). Generation of Control Signals from Present State.

the enable line is always asserted: glitches occur on the output lines of the
decoders. In Figure 5.14(c) the enable has been tied to SYSTEM-CLOCK-H. The
result is that the appropriate decoder output will be asserted only during the time
that the system clock is low, which is the last half of the cycle. As can be seen
from the figure, the assertion occurs half way through the cycle. This is the
method utilized in the finite impulse response filter example. This is the reason
that the ACC-H and S-ADRLD-L lines are driven from flip-flops, since the
decoder outputs are only asserted for half of the cycle.

The success of obtaining the last half of the cycle may prompt one to
attempt to obtain the first half of the cycle by using the other phase of the clock.

SYSCLK-H

---'--IT - H I

STATE1-L
STATEO-L

PRESENT STATE
REGISTER

DECODE
LOGIC

Figure 5.14(a). Test Setup for Using State Decoder.

Chop. 5: Control System Design

SYSTEM-CLOCK-H

Figure S.l4(b). Waveform for Decoder with Enable Always Asserted.

SYSTEM-CLOCK-H

STATE4-L

Figure 5.14(c). Waveform for Decoder with Enable Tied to
SYSTEM-CLOCK-H.

The result is shown in Figure S.l4(d), which indicates that unwanted pulses occur;
this is a result of the propagation delay from clock assertion to change of decoder
output. As can be seen from the waveforms of Figure 5.14, a number of options
are available to a designer, and the merits of each option must be considered
before selecting a design method.

The FIR filter example demonstrates some of the basic principles of con-
holler design. It is imperative that the designer first understand the system
specifications; this includes aspects often neglected, such as the implications of

Chap. 5: Control System Deslgn 213

Figure 5.14(6). Waveform for Decoder with Enable Tied to
SYSTEM-CLOCK-L.

the arithmetic methods, number of bits on the data path, and interaction protocols.
The designer then generates a data path block diagram, an RTL description of the
desired system behavior, and a preliminary state diagram. These tools assure the
designer that the system specifications will be satisfied, and that the necessary
data transfers can be made. When the block diagram is defined, the control sig-
nals of the components of the system are identified and labeled with appropriate
polarized mnemonics. The state diagram can now be refined to specify the asser-
tion of the control signals that will cause the desired work to be accomplished.
The state diagram can then be mapped onto the Moore model to provide a work-
ing control system. The result is a system that will activate the control signals in
the proper sequence to achieve the necessary results.

The state diagram approach is easy to understand, and it is also fairly easy
to implement for small systems. We have shown the next state decode logic to be
multiplexers; classical methods dictate the use of random logic. Manufacturers
now provide registered PLAs (programmable logic arrays) that allow the designer
to put both the present state register and the next state logic inside a single chip,
which is then programmed to follow some specified state diagram. Outputs are
handled in much the same way. One use of these controllers will be used in Sec-
tion 5.6. However, historically other methods have been applied to the control
systems of computers. We now look at some of these methods.

5.4. Sequential Systems with Individual Delays

As we have seen, the first step in any control design is to derive a block diagram
that meets the system specifications, and then to identify on that block diagram
the control lines needed. In this section we will look at an extremely simple com-
puter, and use that machine to exemplify the delay method of sequential control

Chap. 5: Control System Design

systems. The principles here are similar to those used in the state machine control
of the previous section, but the application methods are slightly different. Rather
than have the state of a system stored in a single register, and the state changes
reflected by changes in the state number, the action of the delay type system is
governed by a control pulse that traverses the elements of the control system.

The technique of individual delays described here has been used in the past
for a number of computer systems, but is not widely used in new systems. How-
ever, in some systems constructed entirely within an integrated circuit chip, delay
lines play a prominent part in generating control signals.

The block diagram for our example is given in Figure 5.15. The diagram
shows a simple single address machine, with enough detail represented to illus-
trate the principles of this section. The diagram does not by any means represent a
complete system, since a diagram of that complexity would be overwhelming.
The data paths are patterned after some of the first computers: the connections arc

INSTRUCTION
DECODE

AND-H ADD+ SUB-H

ACC-LD-H

ALLIF" EL MULTIPLEXER ---r--l

MEMORY

ADDRESS

PRoGRAn
CLK COUNTER

I

ARITHnETIC/
LOGIC UNIT

ALU FUN(0I-H

UBR-LD-H nEMORY BUFFER

MEnORY ADDRESS
CLn REGISTER

Figure 5.15. Block Diagram for a Simple Computer

Chap. 5: Control System Deslgn

-

basically point to point rather than bused. Note that the data paths are not com-
plete, as exemplified by the fact that there is no path to the program counter.

The desired behavior for this example is to implement three simple instruc-
tions: ADD, SUBTRACT, and AND. All three of these instructions require two
operands. Since this is a single address machine, one operand is found in the
accumulator, and the other is found in memory at a location specified by the
instruction. The task required of the control section is to cause the requested
action on the data and leave the result in the accumulator.

As in the previous example, the first task is to create a suitable data path
block diagram, which was given as part of the definition of the example. The
designer then must arrange for the required action, utilizing the capabilities of the
data path hardware. The hardware capabilities of this example include:

Program counter: The content of this register identifies a location in memory
where the instruction to be executed can be found. The process of instruction
execution should increment this register to point at the next instruction. This
can be accomplished by asserting PC-INC-H.

Memory address register: This register holds an address to identify a location
in the memory.

MAR multiplexer: The multiplexer selects the source of information for the
MAR. Normal operation is for the PC to be output to the MAR. However,
when MBR-MAR-H is asserted, the address is obtained from the memory buffer
register.

Memory: The memory will provide to the memory buffer register the contents
of the address specified by the memory address register within some specified
delay. For this example we will assume that the delay is 200 nsec.

Memory buffer register: For destructive readout memory technologies this
register remembers the data just read so that it can be restored to the memory.
In general, modem semiconductor memories do not need this capability.

ALU multiplexer: This device selects the BIN operand of the arithmeticnogic
unit. Normal operation selects the contents of the memory buffer register;
when BUF-ALU-H is asserted, the ALU receives the contents of the buffer regis-
ter.

Buffer register: This register is used for internal operations that need a tem-
porary storage location. It is not visible to assembly level programmers.

Accumulator: This is the known register of the machine. All instructions that
manipulate data will find information in this register, and instructions that pro-
duce data results will leave their information in this register.

Arithmeticllogic unit: This functional unit is capable of some rudimentary
actions, as specified by the following table:

MU-FUN OUT Function

0 0 Bitwise AND o f AIN, BIN

0 1 Bitwise OR of A m . BIN

1 0 Inverse o f BIN

I 1 Binary ADD o f AIN. BIN

This ALU has the characteristic that logical operations (AND, OR, INVERT) take
40 nsec to complete; the arithmetic operation (ADD) takes 80 nsec to complete.

Chap. 5: Control System Design

Instruction register: This register is used to hold the instruction during its exe-
cution.

Instruction decode: The dccode circuitry identifies the type of instruction to be
performed. In this example there are only three, but generally there will be
many instructions. The appropriate output line will be asserted to identify
which of the instructions has been decoded.

In addition to the times specified for the ALU and memory functions, we will
assume that register to register transfers require 40 nsec.

The designer utilizes knowledge of the data path connections and the capa-
bilities of the components used on the data path to specify the required action of
the control system. The first step is to identify the required register transfers, and
for this example these transfers are given in RTL form in Table 5.2. The table
specifies the order in which the transfers are to be accomplished. Our task is now
to take these transfers and implement them in hardware. The first step in this pro-
cess is to generate a flow chart that identifies the required steps. The flow chart
for these three instructions is given in Figure 5.16. Note that the flow chart
identifies the signal assertions required to accomplish the transfers specified by
Table 5.2, as well as the delays necessary between the assert:on of .hose signals.
Also note that there is a one to one correspondence between the operations
identified in Table 5.2 and the operations caused by the signal assertions identified
in the flow chart.

To illustrate the process of instruction execution, we will examine the sub-
tract instruction. A timing diagram showing the control lines involved in this
instruction is shown in Figure 5.17. The process begins by transferring the
address of the instruction from the program counter into the memory address
register with MAR-LD-H. Note that the multiplexer normally supplies this infor-
mation to the MAR, so no action is required on the control lines of the multi-
plexer. The memory has a 200 nsec delay, so the MBR-LD-H signal is delayed by
that amount after loading the MAR. The program counter is also incremented at
the same time. The instruction register is loaded from the MBR 40 nsec later,
since 40 nsec is required for register transfers; after a period of time for instruc-
tion decode, the MBR-MAR line is asserted so that the MAR receives its informa-
tion from the MBR. A delay time later the MAR-LD-H line is asserted again,
loading the address of the operand required for the operation. After the memory

Table 5.2. Register Transfers for Three Instructions.
Register Transfers for Example

AND Inslruction ADD Instruction SUBTRACT !nstruction

PC + MAR PC + MAR P C + M A R

MIMAR] + MBR M I M A R] + MBR M[MAR] -+ MBR

PC+I PC K t 1 PC P C t I PC

MBR 1 IR MBR IR MBR 1 IR
MBR -+ MAR MBR + MAR MBR -+ MAR

M [M A R] + M B R M [M A R] - + M B R MIMAR] + MBR

MBR ACC -+ ACC MBR + ACC + ACC 7 MBR + BUF

BUF + ACC + I + ACC

Chap. 5: Control System Deslgn 217

START

200 NSEC DELAY i-,
PC-INC-H

~ B R - L D - H

40 NSEC DELAY &
80 NSEC DELAY /%

AND ADD SUB

Figure 5.16(a). Row Chart for Delay Implementation of Three Instructions.

delay the MBR is loaded and the MBR-MAR-H line reset. Since the subtraction
method specified calls for inversion of the MBR, the ALU-FUN(1)-H line is set
high to present to the input of the buffer register the inverse of the MBR. This
information is then loaded into the buffer register, and the ALU prepared for an
addition operation. By also forcing the carry input to be a "I," the final operation
is the desired subtraction, and after the required delay the ACC-LD-H line is
asserted to load the information into the accumulator. The fetch-execute cycle
then repeats itself, beginning with the assertion of the MARLD-H signal.

The flow diagram and timing diagram together specify the action to occur
and the timing relationship between control signals. The individual delay method
of sequencer design consists of directly implementing the flow diagram with delay
elements. A delay element consists of either a semiconductor device or an analog
equivalent that will accept a signal, usually a pulse, and delay the signal by a
preset amount. In this example we need delays of 40 nsec for the register
accesses - 80 nsec. 120 nsec. and 200 nsec. With these available. a designer
matches the flow diagram with timing elements, and then uses logic gates and
flip-flops to create the appropriate control signals. The delay elements for this
example are shown in Figure 5.18(a), and the additional logic required is shown
in Figure 5.18(b) and Figure 5.18(c).

The system would begin action by injecting into the delay network a single
pulse at RUN-H. This would assert START-H, which in turn asserts MAR-LD-H.
After a delay of 200 nsec, I-FETCHED-H is asserted. This causes the assertion of
both PC-INC-H and MBR-LD-H. Another delay element is used to place the
required time between the load of the MBR and the assertion of IR-LOAD-H. The
AND gates then direct the pulse down the appropriate set of delays, depending on
the instruction decoded. And so the process continues, with the pulse traversing

Chop. 5: Control System Design

AND ADD SUB

set HER-NAR-H &
40 NSEC DELAY e

\L
200 NSEC DELAY

I

80 NSEC DELAY d
START

set HER-MAR-H ,1,
40 NSEC DELAY 0

200 NSEC DELAY e-
HBR-LO-H

reset NBR-MAR-H
set ALU-FUN I 1 -H
set ALU-FUN (0) -H

120 NSEC DELAY +
ACC-LO-H

reset ALU-FUN I 1) -H
reset ALU-FUN 10) -H

+
START

set HBR-MAR-H &
40 NSEC DELAY e

200 NSEC DELAY d
reset NBR-HAR-H

set ALU-FUN(1) -H

60 NSEC DELAY (=b
BUF-LO-H

set ALU-FUN(0) -H
set CARRY-IN-H
set BUF-ALU-H

120 NSEC DELAY (=b
reset BUF-ALU-H

reset ALU-FUN(1) -H
reset ALU-FUN(0)-H

reset CARRY- IN-H

Figure S.l6(b). (con!) Flow Chart for Delay Implementation of Three Instructions.

the delay network and doing work as required. The control signals are created by
tapping the appropriate spots in the delay network, as specified by the flow
diagram. For example, ACC-LD-H is created by ORing the signals from the AND.
ADD, or SUB delay sections together. For signals that need to remain set for
lengths of time, the flip-flop arrangement shown for MAR-MBR-H can be used.
The signal is set when it is first needed, and then reset when it is no longer
needed. This allows both pulses and levels to be used in the system.

Thc preceding example has shown that systems can be designed in a
straightforward manner using delay elements and gates to cause the appropriate
action. The data path block diagram identifies the control points that need to be
activated, and the flow diagram and timing diagram specify the actions and delays
to take place to accomplish the appropriate tasks. This example can easily be
extrapolated to include other instructions: the flow diagram will require additional

Chap. 5: Control System Design 219

RUN-H

AND-END-H - - - -- -. -
ADD-END-H

SUB-END-H

START-H

2 0 0 NSEC DELAY

1-FETCHED-H

4 0 NSEC DELAY

I

AND-H I -

4 0 NSEC DELAY

1 AND-A-LD-H

2 W NSEC DELAY

ADD-H -1

1 ADD-A-SET-H

4 0 NSEC DELAY

1 2 0 0 NSEC DELAY I

120 NSEC DELAY

4 0 NSEC DELAY 4 0 NSEC DELAY

SUB-H I

SUB-A-SET-H

4 0 NSEC DELAY

2 0 0 NSEC DELAY

BO NSEC DELAY

1 120 NSEC DELAY 1

4 0 NSEC DELAY

L SUB-END-H

Figure S.l8(a). Delay Elements Needed for Simple Machine.

branches in the decode section, and additional register transfer level specifications
will identify the work required for arithmetic or procedural instructions. For
example, not all instructions will require action from the ALU, and other data
paths will be required for jumps and other activity.

This method of design has an advantage in that the control can be tuned to
provide the fastest action possible. That is, if it is known that the ALU will do an
AND action in 38 nsec, then the 38 nsec delay can be placed in the appropriate
spot in the system, and the AND instruction will take 2 nsec less than an OR
instruction. But offsetting the speed advantages are some of the practical prob-
lems. The fidelity of the pulse as it travels through the system must be carefully

Chap. 5: Control System Design 22 1

START-H I
AND-A-LD-H
ADD A LO-H

MAR-LO-H

I-FETCHED-H r\ PC-INC-H

I-FETCHED-H I

SUB-BUF-LD-H I\ BUF-LD-H

Figure 5.18(b). Creation of Control Signals for Delay
Method.

maintained, and this can cause additional problems. The system must be carefully
designed to prevent spurious pulses from entering the network; an interesting error
mode is when two pulses are traversing the system simultaneously.

This method allows a straightforward combination of data path block
diagram, flow diagram, and timing information to result in a tunable, high perfor-
mance control system. The control system provides both pulse and level capabili-
ties, and can be easily modified either by changing the delays or by including
other points in the delay network in the creation of control signals. Many of these
characteristics are also evident in the shift register method of control design.

5.5. Sequential Systems Using Shift Register Timing

The concepts of the shift register timing method for control design follow closely
those of the individual delay method. The data path block diagram is used to
identify the control signals, the flow diagram identifies the register transfers and
other work that need to be done, and the timing diagram specifies the interaction
of the control signals required to accomplish the work. However, the timing

Chap. 5: Control System Design

AND-A-SET-H
ADD-A-SET-H
SUB-A-SET-H

MBR-MAR-H

I

ADD-HBR-LD-H
SUB-MBR-LD-H PLU-FUN (1 I -H

ADD-END-H
SUB-END-H
ADD-END-H
SUB-END-H

ADD-HBR-LD-H
SUB-BUF-LD-H PLU-FUN (0) -H

ADD-END-H
SUB-END-H

SUB-BUF-LD-H CPIRRY-IN-H

SUB-END-H

Figure 5.18(c). (conr) Creation of Control Signals for Delay Method.

diagram must now represent events that occur at multiples of the system clock.
That is, the delays of a flow chart such as Figure 5.16 must all be multiples of the
system clock. The preceding example was chosen so that all of the delays were
multiples of 40 nsec - so that will be the assumed system clock rate for this sec-
tion. The concept for the shift register method is to identify the work to be done,
and then to create the proper waveforms by using gates to harness a pulse
proceeding down a shift register.

The creation of the timing action is accomplished by the action of a shift
register. One such arrangement is shown in Figure 5.19. The desired pulse action
is initiated by asserting START-PULSE-L. On the next clock pulse the signal
PULSE-0-H will be asserted. If a pulse duration of one cycle is desired, the
STOP-PULSE-L control line can be created by inverting PULSE-0-H. Thereafter,
on each leading edge of the system clock the pulse "moves" down the shift regis-
ter. The resulting pattern is shown in Figure 5.20, called Method One. The
pulses depicted for Method One form a precise timing capability for the system.
If an event is to occur 80 nsec after initiation of the instruction, then PWE-2-H
can be used to cause the event. However, if a control line needs to be asserted for
more than one clock period, then more than one time period is needed. That is, if
a signal is to be asserted from 80 to 160 nsec after initiation of the instruction,

Chap. 5: Control System Design 223

STOP-PULSE-L --3Y

Figure 5.19. Pulse Creation with Shift Registers.

then the signal can be created by ORing PULSE-2-H and PULSE-3-H. This will
indeed result in a signal of duration 80 nsec; however, there may be a glitch in the
signal caused by the timing difference of deasserting PULSE-2-H and asserting
PULSE-3-H.

One way to get around the problem of glitches on the control lines is to use
set-reset flpflops as we did with the delay line method. Another solution to the
problem is to use overlapping pulses, as shown in Method Two of Figure 5.20.
Pulses with a length of two system clock periods can easily be created by using
the inverse of PULSE-I-H to be STOP-PULSE-L. When these signals are ORed
together, the resulting signal is free of glitches caused by the hazards associated
with pulse assertion.

'The similarities between this method and the individual delay method are
apparent hom the approaches both take in implementing the control signals. The
principal difference is that one method uses individual delays and a pulse that
traverses a control network to accomplish work, while the other method achieves
the correct timing relationships by the use of measured delays in a shift register.
Both methods create the control signals by gating appropriate delayed values with
the necessary enable conditions. The result is a system that assens the control
signals needed to accomplish the necessary work.

An example of gating for the shift register method for the system of the pre-
vious section is given in Figure 5.21. The gates shown are derived directly from
the timing and flow diagrams. The MAR-LD-H signal is always asserted at
PULSE-0 time, or it is asserted at PULSE-10 if the instruction is an AND. ADD. or
SUBtract instruction. For this example, this is the entire collection of instructions.
so the AND and OR gates are superfluous. However, if a number of other instruc-
tions were included in the system, then the gates would be needed. The PC-UiC-
H instruction always occurs at PULSE-6 time, so no additional gating is needed.
The ALU-FUN(1)-H signal is asserted during PULSE-16. PULSE-17. or PULSE-18.
if the instruction is an ADD instruction, or during PULSE-16. PULSE-17,
PULSE-IS, PULSE-19, or PULSE-20. if the instruction is a SUBtract instruction. It
is not asserted during an AND instruction. The other control signals are created in
a similar fashion. Note that the STOP-PULSE-L signal occurs at PULSE-1 time,
resulting in overlapped pulse operation. Also note that the START-PULSE-L

Chop. 5: Control System Deslgn

Hethod One rn 100

1 1 1 1 1 1 1 1 1 1 1

SYS-CLK-H

START-PULSE-L

STOP-PULSE-L

PULSE-0-H

PULSE-I-H

PULSE-2-H

PULSE-3-H

PULSE-4-H

PULSE-5-H

PULSE-6-H

PNSE-7-H

PULSE-8-H

START-PULSE-L

STOPPNSE-L

PULSE-0-H

PULSE-1-H

PULSE-2-H

PULSEJ-H

PULSE-4-H

PULSE-5-H

PULSE-6-H

PIHSE-7-H

PULSEB+

Figure 5.20. Timing Diagrams for the Shift Register Method.

signal occurs at different times for the different instructions, and that initialization
comes from some external circuitry.

Both the delay method and the shift register method provide straightfonvard
approaches of building control circuitry, mapping the information from the flow
and timing diagrams directly into hardware. Both methods allow the designer
flexibility to implement the necessary signals to match the constraints of

Chap. 5: Control System Design 225

START-H

PULSE-19-H

PULSE-20-H START-PULSE-L

PULSE-22-H
SUB-H

PULSE-0-H STOP-PULSE-L

AND-H MAR-LD-H
ADD-H
SUB-H

PULSE-6-H I\ PC-INC-H

PULSE-6-H

AND-H MBR-LD-H

PULSE-18-H
AND-H

PULSE-19-H
ADD-H ACC-LD-H

PULSE-21-H
SUB-H

PULSE-1 8-H
SUB-H BUF-LD-H

Figure 5.21(a). Control Signal Generation with the Shift Register
Method.

technology and application. And both methods have interesting error modes when
more than one signal enters the delay networklshift register. Nonetheless, both of
these methods have been utilized in the design of many types of digital equip-
ment. However, perhaps the most extensively utilized control design method in
recent years is microcode.

5.6. ~icrocode Controllers: A Regular Control Structure

In 1951 Wilkes presented a paper in which he suggested that the design of control
systems was entirely too complicated. He went on to suggest that the process
1 : :.: 1.. ;, . "; simplified by the use of a rqylar method for mnki~ig ~ L C I ~ I O I I S

Chop. 5: Control System Design

PULSE-9-H
PULSE-10-H

AND-H
MBR-MAR-H

ADD-H
SUB-H

PULSE 16-H

ADD-H

ADD-H

PULSE-18-H
PUCSE-19-H
PULSE-20-H

SUB-H

PULSE-18-H
PULSE-19-H
PULSE-20-H

CARRY-IN-H
SUB-H

PULSE-18-H
PULSE-19-H
PULSE-20-H

BUF-ALU-H .
SUB-H

Figure 5.21(b). (con!) Control Signal Generation with the Shift Register
Method.

concerning the next thing to do and what control signals to assert. The heart of
this method was a high speed memory element needed to remember the appropri-
ate sequence of information. However, at that time the memory technology was
not as fast as random logic, nor as readily available. Hence, for many years
Wilkes' suggestions went unheeded. Instead, designers utilized classical tech-
niques, as well as the delay line and shift register methods, to implement sequen-
tial controllers. However, in the mid-1960s memory technology advanced to the
point that it was an attractive alternative to use high speed memory to govern the
action of a control system. We will introduce the method by taking another look
at state machine control, and transfer the state machine ideas to the use of micro-
code.

We k ~ i n our examination of memory-based control methods by reorganiz-
ing the block diagram of Figure 5.15. The same basic components are utilized,

Chap. 5: Control System Design 227

but the organization is changed. The reason for changing the block diagram will
become apparent as we discuss the implementation methods of this section. The
main organizational change is the inclusion of a single data path that is utilized by
all of the components. This single bus organization is very useful in systems
where universal communication is desirable. Each component can transfer infor-
mation to any other component; however, only one value can be transferred in a
clock period. The component required to accomplish this is a bus driver, which
isolates the register outputs from the bus except when the information in that par-
ticular register is required. At that time, the bus driver is enabled and information
from the register is made available to the other elements on the bus.

Transferring the contents of the program counter to the memory address
register is achieved by asserting PCBUS-L to place the contents of the program
counter on the bus, and then after a time required for propagation delay, settling
time, and setup time, MAR-LD-H is asserted to load the information into the MAR.
One method of implementation is to make the various registers from simple regis-
ter devices such as the '273, and the drivers from tri-state drivers, such as '244.
For situations where the data is not necessary except to drive the bus, such as the
buffer register, it is possible to obtain both register and driver in a single package,
such as the '574. However, not all registers can take advantage of this capability,
since the output of the accumulator is always needed at AIN of the ALU, and the
value in the memory address register is required at the memory.

As with the other control implementations, our first requirement is a com-
plete data path block diagram. with control points identified. This is given in Fig-
ure 5.22. We can now generate a state diagram that identifies the assertions
required in order to accomplish the desired results. These results have already
been identified by the flow chart given in Figure 5.16; we can now~generate a state
diagram to do the same work. One such state diagram is given in Figure 5.23.
This state diagram illustrates some interesting points, and represents a fairly con-
servative approach to system design. Let us consider the methods illustrated by
Figure 5.23, and then consider some alternatives.

The method used for transferring information across the bus is illustrated in
the first two states, which cause the MAR to be loaded with the contents of the PC.
In State A the signal PCBUS-L is asserted, which causes the contents of the pro-
gram counter to be placed on the bus. This same signal is asserted in State B,
which guarantees that the value will be present during that state also. The loading
of the MAR is caused by the assertion of MARLD-H in State B; this signal causes
the register to accept the information while the bus is held steady by the PC-BUS
line. The relationship between these signals is shown in Figure 5.24. The method
described in the state diagram, and shown pictorially in Figure 5.24, requires two
states, and guarantees that the data is loaded into the MAR at the beginning of
State B. The same work can be accomplished by generating both the MAR signal
and the P C B U S signal simultaneously, as shown in the alternative method. The
key to success of this method is that the register is loaded on the rising edge of
the MAR-LD line. Thus, for the duration of State X the P C B U S signal is causing
the data to be placed on the bus, and sufficient time is allotted for the delay in that
process, as well as the setup time on the inputs to the MAR. Then when the low-
to-high edge occurs on the MAR-LD line at the end of the state, the data available
is loaded into the register. For most logic families (LS, ALS, AS, etc.), the delay
in turning off the driver is sufficient to guarantee that the data is stable long
enough to be correctly loaded into the MAR. This alternative method requires
only one state to transfer the information, instead of the two states shown for

Chap. 5: Control System Design

State A 6 PC-Bus-L

PC-BUS-L

clear CNT

MBR-BUS-L c5

BEGIN

MBR-BUS-L

inc CNT CNT !a 5 a

BEGIN

MBR-BUS-L

CNT != 5

MBR-BUS-L

BUF-BUS-L
ALU-FUN(1)-H

ALU-FUN(1)-H

BEGIN

Figure 5.23. State Diagram for Single Bus Processor.

Chop. 5: Control System Design

F- State A - State B -{

PC-BUS-L

MAR-LD-H 1
Method of Figure 5.23

Alternative Method

Figure 5.24. Timing for Loading MAR from PC.

Figure 5.23. One caution with this method of information transfer is that the
designer must ascertain that the data has been stable in the loaded register for a
sufficiently long period to guarantee desired results for the next operatian. Th2t
is. the propagation delay, from clock assertion to data available, must be
accounted for in any subsequent data manipulation.

This method is applicable to registers and other edge-triggered devices
whose clock lines are driven directly from signals generated by the state machine.
Another method to achieve this result is to use devices with separate clock and
enable lines. One such device is the 74F550, shown in Figure 5.25. This register

A data lines B data lines

Clock data from A lines to internal register
Flag to A: new data is in
register to be output to k

Clock data from B lines to internal register

Clear Flag to A line
Flag to B; new data is in

Clear Flag to B line reglster to be output to B
Output data from internal register to A lines
Output data from internal register to B l m e s

Enable CLKA function; register mill not load if high
Enable CLKB function; register will not load in high

Figure 5.25. Register with Separate Clock and Enable Lines.

Chap. 5: Control System Deslgn

has a clock enable control line, which controls the effect of the clock. This allows
the clock line to be connected directly to the system clock, and then the line that
needs to be asserted by the control section is the enable line. This is particularly
useful for systems in which all events are to happen at precisely the same time,
and that time is defined by the rising edge of the system clock. A number of dev-
ices utilize this strategy for their operation, including registers (2950, 2952, '550,
etc), arithmetic units (2903), and controllers.

Another example of the separate clocWenable function is demonstrated by
the use of counters in this system. The 200 nsec delay required by the memory is
obtained by waiting for five state times before proceeding. This wait time is
governed by a counter similar to those used in the example of Section 5.2. The
control design used in that section caused control signals (specifically, clock lines
of counters) to be asserted when the action was needed. Another method to
achieve the same result is to use C U U ~ I ~ C M which will increment only when
enabled, even though a clock signal is present at the clock input. The counters
will increment only when the enable line is asserted, and the enable line is con-
trolled by the state machine. This is the method which is illustrated in State B
and State C of Figure 5.23. The counter is cleared in State B, and then State C
calls for incrementkg the counter. This cannot be accomplished if the clock sig-
nal is fed d i i t l y from the decode of the state, since the state does not change.
(As pointed out earlier, ANDing the clock signal with the system clock would
result in a pulsating clock line.) However, if the State C signal is utilized to
enable a counter, then the desired result is obtained. For the '161 of Section 5.2,
the action can be obtained by using a signal generated in State C to assert the
Enable P line of the counters.

Other delays an implemented by repeating the action of one state in another
state. The 40.80 and 120 nsec delays can be obtained by using one, two, or three
states. Thus, delays can either be obtained by staying in one state for a predeter-
mined number of system clock times, or by using multiple states, assuring that the
required signals are asserted within those states.

The state diagram of Figure 5.23 is specifically constructed to follow the
flow diagram of Figure 5.16. No attempt has been made to try to save on the
number of states utilized. An examination of the state diagram reveals that there
are some duplications, specifically in the area of obtaining the operand of the
instruction. One method of reducing the number of states would be to delay
decoding of the instmction until the operand has been obtained. This results in a
system that partially decodes instructions at appropriate times to attempt to
minimize the number of states. For example, the system under consideration
always requires an operand for each instruction, but in a real system instructions
such as "increment" or "clear" affect only the accumulator, and do not need to
obtain another operand. Thus, the organization of the system hardware, the com-
plexity of the instruction set, and the goals of the system all influence the designer
in the creation of the state diagram that describes the control algorithms of the
system.

Using classical methods, or those described in Section 5.2, we can imple-
ment a control section that operates as described by the state diagram of Figure
5.23. A block diagram of such an implementation is shown in Figure 5.26. The
current state of the system is stored ii a register labeled "Present State Register."
The next state logic uses the current state, the instruction, and the start signal to
select the appropriate next state. In the direct implementation method of Section
5.2, this logic consists of multiplexers and perhaps some minimal logic. With
classical methods, this would be some type of random logic implementation.

Chap. 5: Control System Design

Figure 5.26. Block Diagram of State Machine Controller for Simple Computer.

Regardless of the implementation method, every clock period a new determination
is made as to the next state, and if the implementation is correct, the state diagram
of Figure 5.23 will be followed. The control signals are generated by decoding
the present state; these signals may or may not include the system clock in their
implementation. The following observation can be made concerning the control
signal generation: the signals asserted at any given time are functions only of the
present state (and clock), and the signals to be asserted in any given state are
determined during the design process. Since the signal assertions are set up at
design time, the same information used to select the appropriate next state
(present state and inputs) can also be used to determine the signals that will be
asserted at that time. Therefore, during the same period that the next state is
determined, the appropriate signal assertions for that state can also be determined.
This leads to the implementation shown in Figure 5.27.

The block diagram of a system controller as shown in Figure 5.27 is
extremely simple. The next state logic determines the state to which the system
will proceed from the present state, based on the present state and the external
inputs. At the same time, this same information will be used by the next state
control logic block to determine the control signals to be asserted in the next state.
As stated earlier, this information is available at design time, and will not change
during the useful life of the product. Both the state infonnation and the control
lines will be held in registers, so that transitions on control signals will occur at
the same time that the state changes. If it is deemed desirable to do so, some con-
trol signals can be conditioned with the clock to create appropriate timing pulses.
This arrangement eliminates the use of a present state decoder for generation of
control signals, since all of the signal generation is determined prior to the active
edge of the clock.

The logic utilized by a system for the next state logic and next state con-
trol logic blocks can be created by any appropriate means open to a designer. But
it is instructive to note that it need not be random logic nor the multiplexer
arrangement presented earlier. Some manufacturers build devices specifically
designed to do this function, and they provide means to create the appropriate
logic, depending on the mechanism used for implementation of the device. Figure
5.28 shows a block diagram representation of the 82S105, which is called a "Field

Chap. 5: Control System Design 233

Figure 5.27. Block Diagram of State Machine Controller Combining Generation of Next
State and Control signals.

outputs Inputs / 16

I '

Figure 5.28. Internal Makeup of a Field Programmable Logic Sequencer

Programmable Logic Sequencer." This device allows 16 external inputs; in addi-
tion there is a reset/output enable line (function is defined at time of program-
ming). The device has eight outputs, all of which are registered so that the
outputs will change only after a clock transition. Internal to the device are six
feedback lines; this allows creation of a state machine with up to 64 states. The
determination of the next state and the output levels is accomplished by a pro-
grammable AND/OR array; the limitation is that the device is capable of only 48

I - I

AND
Array

Chap. 5: Control System Design

- OR
Array

AND terms and 14 OR tcnns. This places some limits to the complexity of the
state machines that can be implemented by the device, but a variety of very useful
controllers is feasible. A large number of similar devices can be utilized to imple-
ment sequencers, such as registered PALS, state machine controllers, and
registered PLAs.

One "feature" of this type of unit is that the feedback variables are internal
to the device. This is a benefit in that the speed is not hampered by going off
chip, which leads to a higher clock rate. Note that the inputs will need to be syn-
chronized to the system in some way. The drawback to this feature is that the
state variables are not available to the user to aid in the debug process. Thus, the
only way to ascertain the state of the machine is to observe the output pins. The
designer must be careful about his assumptions concerning the correctness of the
machine during checkout. Nevertheless, programming aids. available from both
manufacturers and third party vendors, greatly enhanc': the ability of the designer
to create a correct system.

As a result of making state machine devices compact and easy to generate,
many of the designs utilized in recent digital systems are created with a number of
individual state machines. In these systems, each state machine is a single IC
created to perform its own task, and the units function together to control the sys-
tem. Thus, rather than have a single controller to control all of the action of the
system, the control is divided between smaller units, and these units each activate
a subset of the control lines. An example of this is described in Section 6.5,
where one state machine controls the action of an interface module, while dif-
ferent state machine controls the signals used to interface to the bus.

The use of logic arrays for the next state and output generation allows crea-
tion of a variety of useful devices, but does not permit arbitrarily complex sys-
tems. Also, since the feedback is internal tathe device, the number of~outputs is -
limited to~those available from that chip. One way to expand the use of this tech-
nique is to use memory instead of AND/OR arrays for the logic blocks. That is, if
we consider the correct next stateloutput information as a pattern of ones and
zeros stored in a memory, and the address of the correct pattern is formed by the
feedback variables and inputs, then all combinations of states and input variables
are possible. The memory utilized in this arrangement can be ROM or PROM, and
the number of input variables and feedback variables can be increased by adding
more memory chips. For example, one such device is the 27S55, a PROM with
eight registered outputs and 4,096 locations, which requires 12 address lines.
Three of these devices clocked together would give 24 outputs, and these could be
used in any combination required by a design. A system implementing the state
diagram of Figure 5.23 would require six feedback variables; these would form
six of the 12 address lines on each device. That allows six other lines to be used
for the start signal and instruction lines, as well as any other inputs required in the
system. The 24 outputs would then be utilized for six feedback variables and 18
control lines; we have identified 16 lines in the block diagram of Figure 5.22.

This arrangement has several practical advantages. The controller is com-
pletely contained in three 24 pin devices, requiring about 1.4 square inches of
board space. The fact that it is programmable allows a designer to try different
state diagrams or implementation ideas by merely changing the devices, not phy-
sically changing any wires. The net result is a very versatile system controller of
arbitrary complexity. No limitations have been made concerning the complexity
of the state diagram, nor concerning the number of states in which control signals
can be asserted.

Chap. 5: Control System Deslgn 235

At this point we will pause in our discussion of control system construction
to identify a technique that can be beneficial in the checkout and maintenance of
sequential machines. One basic model for a sequential system was given in Fig-
ure 5.2, and this basic model is reflected in the diagram of the sequencer shown in
Figure 5.28. One of the basic problems facing system designers is the checkout
of equipment that has been constructed. For simple designs made from individual
gates, or for any system in which access to major system components is readily
available, a brute force method of checkout is often utilized. With this method.
the outputs of the system are observed under the necessary conditions of input and
history to check for correctness. If improper behavior of output signals is
observed, then the logic required to generate those signals is meticulously checked
for correcmess. The problem may lie in improper implementation of the logic, or
the problem may concern an improper design based on flawed assumptions about
the problem to be solved and the available inputs. Thus, not only the logic net-
work, but also the design of the logic, must be checked for errors.

If the system to be checked is a sequential IC, such as that shown in Fipre
5.28, then it is difficult, if not impossible, to test the actual logic. Access is
needed for controllability and observability: we need to control the inputs to the
system, and we need to be able to observe the outputs of the system. Control
over the external inputs of Figure 5.28 is easily obtained, but control over the
feedback variables is not readily available, since they exist solely internal to the
device. Similarly, the outputs of the chip can be readily observed, but the con-
tents of the internal state register is not available to the external to the device.
One of the techniques used to provide both controllability and observability is
called the scan technique, which is used to provide access to the internal registers
of a svstem.

The basic idea of the scan technique is to provide a method for controlling
and observing the contents of the registers internal to a system. Rather than pro-
viding additional pins for all of the desired points, the internal registers are
configured as either a normal register or as a shift register. In normal operation,
the registers behave as we have discussed to this point: at the active edge of the
clock, the register is loaded with either the output information or the next state
information. In diagnostic mode, the registers are reconfigured as a single serial
shift register, and activating the clock shifts out the bits in a serial fashion. Thus,
all of the internal register bits can be observed. Similarly, as the bits are shifted
out, new bits can be input to the system to allow external control of the levels
inside the device.

The application of the idea requires some modifications to a system. This is
indicated by modifying the organization of the device shown in Figure 5.28 to
include the elements shown in Figure 5.29. The additional lines required are
minimal: a control line to normal or diagnostic operation, a serial input, and a
serial output. A good description of the technique and its application is available
in [McC186]. Some manufacturers provide integrated circuits with this capability
built into the register elements. Advanced Micro Devices refers the additional
registers in their devices as "shadow registers," but the idea remains the same:
provide ability to control and observe needed points in a system [see AMD88,
Lee87, and Schrn871. This need not apply only to integrated circuits, but can be
used in any sequential module. IBM utilizes this technique in a number of sys-
tems, where it is known as level sensitive scan design (LSSD) [TeSw82].

The state machines implemented to this point have been created to match a
timing constraint given in the problem statement. One of the questions to be

Chap. 5: Control System Design

Snrial Regicters
Control - - I

outputs Clock

Inputs

O Serial out

Figure 5.29. Internal Makeup of a Field Programmable Logic Sequencer with Registers
for Scan Technique.

16
/

7

addressed concerns the speed of a state machine: how fast can it run, or how fast
should it run? These two questions, in general. have different answers. One
answer comes from the speed at which the controller can operate. The other
answer comes from the speed at which the elements of the data path can operate.

All of the examples included in this chapter use edge-triggered registers, in
which the outputs change to coincide with the values at the inputs when the active
edge of the clock occurs. Thus, the timing requirements of the system must
satisfy the constra~nts of edge triggered devices. Another design approach is to
use devices that operate on a latching principle, in which the lebel of the outputs
(of the latch) follow the level of the inputs so long as the clock (or enable) of the
latch is asserted. A description of the differences in designing with edge-triggered
devices and latched devices is found in Section 7.2.

fi state ma-ini~o_n~@ler-o~fe_~pe shown in Figure 5.27 c o n s i s u a
r e g s r iiiiF@_mi=&ogic for generation of co%ol 'Signals' and next state determina-
%The minimum cymZFfor3FSystem clock (S Y S ~ ~ C L O C K - H) must
include times sufficient for each of these functions. This time can be broken

AND
Array

down into three basic components, as shown in Figure 5.30. When the active

OR
Array

SYSTEM-CLOCK-H I r
WORK-SIGNAL-H

Figure 5.30. Component Times for Controller Cycle Time.

Chap. 5: Control System Deslgn

edge of the clock occurs, there is a propagation delay time (tpd) after which sig-
nals become asserted, both in the present state register and in the signals that
cause work in the data path. Once the present state is stable (and also the register
holding the synchronized inputs), there is a time required for the choice of inext
state to become stable. This is labeled in the figure as tlogic, but the decision
could be made by random logic, PLAs, or memory. Whatever mechanism is util-
ized to determine the next state and the correct levels for the control lines in that
state, tjogic must be sufficient to allow the these signals to become stable. When
these values are stable, another time must be accounted for, which is the setup
time of the register being used as the present state register (and the registers for
the work signals). This is shown as t,, in the figure. The setup time is the
amount of time prior to the active edge of the clock that a signal must be present
at the input of a device to guarantee that the output stays at the required level
after the clock occurs. Any time after the setup time requirement has been
satisfied, the next active edge of the clock can occur. The sum of these three
times provides a minimum cycle time that must be met by the system. For some
high speed l T L parts, tpd = 8 nsec, tlogic = 19 nsec, and t,, = 3 nsec, and the
minimum cycle time would be 30 nsec, which gives a system clock frequency of
33.3 MHz.

As can be seen from Figure 5.30, the actual cycle time is often much longer
than the minimum cycle time. The reason for the longer cycle time is not that the
controller is incapable of running faster, but rather that the functions occuning on
data path require a longer time to complete. Consider the timing relationships
shown in Figure 5.31. which shows some of the signals required to add a value
from the MBR to the accumulator. After the active edge of the clock, time is
required for the work signals to become asserted, as shown in both Figure 5.30
and 5.31. Once the work signal becomes asserted, another propagation delay time
is required; in this instance, it is for the driver to assert the value contained in the
memory buffer register onto the bus. Once the value on the bus is stable, another
time is required, which is the addition time of the ALU. It is assumed that the
function lines and the carry input line of the ALU for the addition function became
stable at the same time that the MBR-BUS-L signal became asserted; hence, these

SYSTEM-CLOCK-H A l-----J

MBR-BUS-L

tpd of controller

t of bus driver pd

tadd of ALU

I,, of accumulator 1

Figure 5.31. Component Times for Data Path Cycle Time.

Chap. 5: Control System Deslgn

External

Inputs

lines are not shown in the figure. IT for some reason these lines were not stable
until after the data at the input to the ALU became stable, then the tadd of the ALU
must be adjusted to reflect the delay time from the last stablc. signal. Once the
correct results are stable on the outputs of the ALU, a t,, is required before the
clock line of the accumulator can be asserted. The sum of the times required for
the longest sequence of events in a single cycle establishes the minimum allow-
able cycle time for the data path, which is usually longer than the minimum cycle
time for the controller. So the controller time is adjusted to match the cycle time
requirements for the data path in the operation of the system.

Two basic functions are provided by the systems shown in Figure 5.26 and
Figure 5.27. These are the choice of a next state, and the assertion levels of the
control signals for each state. As we have seen, the next state logic and the next
state control logic of Figure 5.27 can be implemented with memory devices. We
now formulate a different view of the function provided by Figure 5.27, and
present this view in Figure 5.32. The same functionality is shown: part of the
system is used to control the function of the device by sequencing through the
proper states, and the other part of the system controls the flow of data in the sys-
tem by asserting the appropriate signals on the data path devices. The only addi-
tion to the process included in Figure 5.32 is the address selection portion of the
system. The function provided by this section is to determine the address in the
logic memory that contains the correct next state and control line assertion infor-
mation. This address is a function of the present state and the external inputs.
When the memory address is provided, the memory responds with the location of
that address, and this information (the new state and new levels for the control
signal assertions) is available for the control registers. The number of states, the
complexity of the state diagram, and the number of inputs to the system determine
the amount of logic memory needed for the selection of a next state. In addition
to the complexity of function and number of inputs, the number of control signals
generated by the unit determines the amount of logic memory needed for control
signal generation.

Memory

"S Memory: L ic of Next State Determination
and2ontrol Signal Assertion

to control points of data path

Figure 5.32. State Machine Implementation with Memory Implementing Logic Functions.

Chop. 5: Control System Deslgn 239

* 1. Address
Select~on

? 1 1 1

Next
State
Logic

Present State

Control Signal
Assertion

Logic

Control Signal Register

I 1 1

The diagrams in Figure 5.27 and Figure 5.32 represent the same function.
and the difference is basically cosmetic. Figure 5.32 shows the elements of Fig-
urc 5.27 rotated by 90'. However, the diagram shown in Figure 5.32 matches
most of the diagrams shown for another control technique which is called micro-
code. We expand the detail of Figure 5.32 slightly to obtain the system shown in
Figure 5.33.

~ ~ r e ~ n t ~ t e ~ i s ~ $ ~ t i o n and the registered control lines are cm-
bind in a register called the ~ i c ~ ~ s ' ~ c t i b T ; ~ ~ i s t e ~ ~ ~ ~ 0 f t h ~ 7 O ~ i ~ for con-
trol signal generation and next state sele&iircombiied into one functional unit
called Microcode Memay. Instead of a location in the microcode memory being
strict$ a-f&i&&f the current state and all inputs, a functional unit labeled
Microcode Address Generation performs the function shown as Address Selection
in Figure 5.32. This unit selects the appropriate address for the next set of control
lines; this forms the next microinsbuction to execute. The complexity of the
microcode address generation unit reflects the designer's tradeoff choices for
speed versus complexity. We will describe different approaches in our next
design example. Just like the present state register identified the state of a state
machine controller, the registers and memory elements included in the microcode
address generation module identify the state of a microcode machine. The
address issued by the microcode address generation module identifies the next
micminstruction to execute; the address is then analogous to the information con-
tained in a present state register. However, the analogy is not exact, since the
functions of the microcode address generation module can include things like sub-
routine linkage capabilities and loop control. However, the analogy does demon-
strate the close conceptual relationship between microcode systems and systems
designed with a state machine approach. The micminstruction register provides

MICROCODE MEMORY

RICRO INSTRUCTION REGISTER

I

1
SEQUENCE lNFORflATlON P k

C C 0
n m x 3 ' n ' n $ ~ mv ~ x o - c v ~ r n

Figure 5.33. Implementation of Micmcode Contml.

Chap. 5: Conhd System Design

the sequential control functions of the present state register, and it also specifics
the assertion of the control lines of the data path.

This model is in agreement with the intuitive concept that work is accom-
plished by activating control signals in a sequential fashion. The sequential action
of the control signals is specified by the sequence of microinstructions. and the
address selection of the next microinstruction is derived during the execution of
the current microinstruction. Thus, if the microinstructions were strictly sequen-
tial, the address could be provided by a simple counter. which would increment
from one address to the next. The counter would be reset when the process
needed to start again. The next address selection process can become arbitrarily
complex; the address of the next microinstruction to execute can be one of many
determined by a complex algorithm. In any case. a number of bits are used to
control the selection of the next address; the remainder of the bits in the microin-
struction register are used to control the data flow through the data path section of
the device.

Let us begin our discussion of the contents of the microinstruction register
by including whatever bits are required to specify selection of the address of the
next microinstruction. In Figure 5.33 these bits are merely labeled "Sequence
Information." The next bits to include in the microinstruction register are the con-
trol lines identified on the data path block diagram; we include one bit for each
control line needed. The result is an extremely wide microinstluction register; the
number of bits is the same as the number of control lines required to select the
next address and control the data path. This style of microcode has received the
name of "horizontalmicroc& because the microcode grows wider as more
functioncare added.

The horizontal microcode technique results in the fastest microcode conmli-
e n for two separate reasons. The first is that, since all of the bits are independent,
multiple operations can be specified in the same microcode word. For example,
assume that the value in the program counter is to be loaded into the memory
address register and into the accumulator. In a horizontal scheme the clocks of
both registers could be activated simultaneously. resulting in the transfer of infor-
mation to two destinations in one cycle. This concurrent operation is not limited
to information transfers over a bus, but can be observed in any independent opera-
tions. The second reason for enhanced speed is that no decoding is required for
the control signals. This reduces to a minimum the cycle time required for opeia-
tion of the system.

In contrast to the horizontal microcode method is a technique called :'verti-
cal microcode." This method emphasises not speed, but rather conserving system

, --2.

resources - power and microcode bits. The method calls for combining the bits
required for basically independent functions. For example, in Figure 5.33 there
are six lines which, when activated, assert the data lines on the bus. These func-
tions are not totally independent: we do not want more than one of these asserted
at any time. Therefore, we can specify a single line to be asserted by encoding
this information in fewer bits. In this case, we can specify one of the six lines
with 3 bits; for example, a decoder such as a ' 138 could be used.

The encoding of information in this manner has two effects, both of which
tend to slow down the operation of the system. The first is that the decoding of
the bits is not free; more time is required in each cycle to allow for the decode
function. This increases the time required f x each cycle. The second cause of
slowdown is that the system has a reduced capability of performing operations ill
parallel. Consider, for example, encoding the choice of N bus destinat.on lines in

Chop. 5: Control System Design 24 1

log2 N bits. Combining bits in this manner precludes sending information to two
destinations simultaneously; such an operation would require two cycles with the
encoded scheme. Thus, the time required for accomplishment of work is
increased because the individual cycle time is increased, and because more
microinstructions are required. This increase in the number of microinstructions
causes the required microcode memory to increase "vertically," which leads to the
name of this technique.

The horizontal and vertical microcode methods both control the action of a
system by sequencing through a set of microinstructions. However, each
approach uses the system resources in a different way. The horizontal approach
chooses to consume resources (power, number of bits in microcode word, etc.) to
make the system run faster, both from concurrency of many simultaneous opera-
tions and from the minimal cycle times available. The vertical approach chooses
to conserve the resources, limit concurrent operations, and accept a slower overall
system speed. However, both mechanisms share many common characteristics, as
demonstrated by the microcoded system in the following section.

5.7. A Microcode Controller

To demonstrate both the vertical and horizontal concepts of microcoded control,
we will design two different microcode controllers for a computer system. The
computer we will use for this example is patterned after the Data General Nova,
which has been used for many years. This is not as exotic a machine as many
newer machines. In fact, in many real aspects this system has been superseded by
the 16- and 32-bit microprocessors available today. This system has been chosen
to illustrate the ideas presented because it is simple enough to present in the
confined space of a this section, and at the same it is complex enough to pro-
vide an fairly comprehensive example. A block diagram of the system is shown
in Figure 5.34. Note that the diagram identifies the registers known to a

16-Bit Computer System

Arithmetic

Logic

Unit

Figure 5.34. Block Diagram of 16-Bit Computer System.

Chap. 5: Control System Design

programmer, without attempting to identify the physical links that connect the
registers. The possible data transfers and arithmetic operations are defined by the
instruction set. We will not describe the entire instruction set of such a machine;
rather, we will select a few instructions and examine the rudimentary operations
required to accomplish those instructions. If our instruction set matches the Nova
exactly, we would like our module to execute the instructions in such a fashion
that an observer would not be able to differentiate between our machine and a
Nova: the "macro" machine behavior would be equivalent. We would then
accomplish the work of the "macro" machine with our "micro" machine.

The machine depicted in Figure 5.34 has two 16-bit accumulators. In the
Nova architecture these accumulators are also the first two locations of memory.
Thus, actual registers are not required for this information; it will reside in the
first two locations of main store. The memory address register, program counter,
stack pointer, and stack limit register provide 24 bits of address information. The
instruction register holds 16 bits, not all of which are needed by all instructions.
The status register is composed of 4 bits that are both controlled and utilized by
many of the instructions of the computer. The Nova instruction set utilizes uo
instructions instead of having strictly memory mapped UO. Thus, to allow for
these instructions we will need some interface lines as well. These will be
described in more detail as we discuss the implementation.

The concepts of microcoded control can be applied at different levels. The
address control, the microcode memory, and the microinstruction register can be
composed of individual registers and memories, or the entire system can be part
of a single integrated circuit. Many microprocessors utilize a microcoded control
section internal to the chip. However, one family of components, called bit sliced
processors, has been specifically designed to utilize microcoded control. 7he
members of this family are so constructed that they can be put together in systems
to satisfy a variety of constraints. In order to implement a microcoded system to
perform the action of the system of Figure 5.34, we will use two of the most com-
mon microcoded devices. These are the 2901 Four Bit Microprocessor Slice and
the 2910 Microprogram Controller. These units are available from several
manufacturers, as well as newer units with extended capabilities.

A simplified block diagram of the 2901 is shown in Figure 5.35. This
diagram shows the main data paths, but the control lines are merely suggested,
and some of the data paths are not shown. What the diagram does indicate is that
internal to the 2901 are a 4-bit ALU, a register bank holding 16 registers, a Q
register, and multiplexers to control the flow of data. The registers (implemented
in RAM) have two sets of addresses; the value of the register identified by the A
address is loaded into the A latch, and the value of the register iden~ified by the 3
address is loaded into the B latch. These loads occur at the beginning of a cycle,
so that the values are available to the operand select function. The operand selec.
portion of the device selects one of eight available combinations of the Data In, A,
B. Q, and zero values. The two values chosen are fed into an ALIJ capable of
AND, OR, EXCLUSIVE-OR, ADD, and SUBTRACT, as well as some variations of
these operations. The output of the ALU can then be used as an output of the
chip, as well as providing information to the registers. Writing can occur to the Q
register, or to a register specified by the B address lines. In addition, there are
data lines that allow cascading the modules to form units of higher numbers of
bits, as well as lines that can provide status information. A data sheet should be
referenced for a complete specification, but for the purposes of our example we
need to know the data and control lines to be concerned with for the data path and

Chap. 5: Control System Design 243

8 Function ALU

Control
Lines

I

Control r'i2
MUX, Shift

Q Register

Figure 5.35. Simplified Block Diagram of a 2901 Bit Slice
Microprocessor.

microcode sections. The data path is basically taken care of by the data in and
data out lines; in addition some status lines need to be utilized. The control lines
include the A and B addresses, which are each 4 bits, and the nine control lines.
These we will need to include in the microinstruction register.

The address selection portion of our microcoded machine will be handled by
a 2910. a simplified diagram of which is shown in Figure 5.36. Like the 2901. this
diagram does not show all of the features of the 2910, but points out the major
capabilities. The unit is capable of handling a 12-bit address, which will address
up to 4,096 words of microcode memory. This is sufficient for most applications;
however, similar units are available that will control more address bits. The mul-
tiplexer in the unit selects one of four sources:

The data path allows for an external source to specify what the next microin-
struction address will be. This is useful for jumps, subroutine calls, and similar
activities.
The register path allows the functional unit to specify at some previous time an
address used to specify a microinstruction.
The stack path is used for returning from subroutines, and for providing an
address during special function operations.
The microprogram counter-register path is used to proceed to the next instruc-
tion.

Chap. 5: Control System Design

Input

Control
Lines

lncrernenter a-

,' 12

Figure 536. Simplified Block Diagram of a 2910 Sequencer.

Register

The incrementer is not built into the microprogram zounter-register, a situatio.~
that seems unreasonable. However, consider the desired action when a subroutine
address is provided via the data path. In this situation, the microprogram
counter-register contains the address of the next instruction in sequence (after the
currently executing microinstruction), and this address is to be placed on the stack
as a return address. The output lines contain the address of the subroutine (sup-
plied as an input on the data lines), and the microinstruction at that address will
be fetched for execution. The address of the microinstruction that should be
obtained next is the second instruction in the subroutine; therefore, the value
presented to the microprogram counter-register is one more than the subroutine
address, not one more than the current address. Hence, the incrementer is con-
nected to the output lines of the multiplexer, not to the microprogram counter-
register containing the current address.

The control lines of the sequencer select one of sixteen instructions, many
of which have a conditional nature associated with them. The conditional
mechanism allows the address at the output to be one of the four values available
at the input to the multiplexer, the selection of which depends upon the condi-
tional inputs. Not shown on the block diagram are three output lines, which can
be used to control the source of information presented to the input lines: PL-L,
MAP-L, and VEC-L. For most of the instructions PL-L is asserted; this can be used
to enable information from the microinstruction register to provide the necessary
data. One of the instructions causes the MAP-L line to be asserted; another

Stack Pointer

Chap. 5: Control System Deslgn 245

-
I

1

Multiplexer

Subroutine

Stack

1
Microprogram

Counter-Register

I 1

instruction causes the VEC-L to be asserted. These signals are provided so that
when some external information, such as the op code of an instruction, is to cause
the system to jump to an externally supplied address, that address can be made
available to the sequencer. In this case, the normal source of address information
is disabled (PL-L is deasserted), and the alternate source of address information is
enabled (MAP-L or VEC-L is asserted). The mapping between opcodes and the
address of their respective microcode implementations can be easily stored in a
PROM. The output enable of the PROM can be directly connected to the MAP-L
signal, and when the system requires the mapping function to be performed, the
appropriate address is supplied to the inputs of the sequencer. The VEC-L line is
utilized in the same fashion: an external address, such as a vector supplied by the
user, is enabled onto the input lines at the appropriate time.

Like the 2901, the 2910 contains both control lines and data lines. However,
in this implementation the data lines of the 2910 are all concerned with microcode
addresses in the control section, and do not have a direct bearing on the data path
section of the system. The data path for our example is shown in Figure 5.37.
This diagram indicates that we are going to simulate the action of the 16-bit
machine with an 8-bit system; 16-bit transactions will then require two transfers.
The 8-bit system is composed of two 2901 processing elements that have been
combined to provide 8-bit arithmetic and logic capabilities. The address and
instruction information needed by the processor section are provided by the
microinstruction register (MIR). In addition, the MIR supplies 8 bits of data to
provide a constant load capability. Often a system designer will need the capabil-
ity to place a known value in a register, or provide a constant for comparison or
masking purposes. The other modules of the processor shown in Figure 5.37 are
for the data and address paths. The data path is composed of bidirectional regis-
ters; this allows our system to load information in 8-bit quantities, and these quan-
tities are then available on a 16-bit bus. The reverse path is also available, allow-
ing our module to accept 16-bit values 8 bits at a time. The DATA HIGH and
DATA LOW blocks of Figure 5.37 can be constructed from individual registers
and hi-state drivers as shown in Figure 5.38(a). The address path is broken into
three 8-bit quantities, which together form a 24-bit address. These registers can
be read individually by the 8-bit system, or they can provide an address under the
control of an arbitration module, which is not considered here. The address
modules of Figure 5.37 can be created with the register and driver configurations
shown in Figure 5.38(b).

Not shown on the diagram are the control signals used to interact with the
memory and the UO. This system is patterned after the Nova, but many of the
features are different. We will assume that there is a separate memory address
space and UO address space; this will require a method to identify the address
currently on the address bus. That is, the control lines must establish a different
protocol (either different physical lines or a different accessing mechanism) for
the UO devices than that used for the memory locations. The Nova UO structure
calls for three functionslregisters at each interface address, and these are labeled
A, B, and C . In this implementation, there are write and read control lines to each
of these elements. In addition, there are some other control signals for testing
conditions and causing action at the interface. Table 5.3 identifies the various
control signals that we will include in our design, in addition to those found in
Figure 5.37.

With the detailed data path block diagram available, the signals needed to
control the flow of information in the system have been identified. In addition,

Chap. 5: Control System Design

DATA-HI -BUS-L

DATA-OUT-L

0-LO-OUT-CLK-H ,-= DATA SYSsUS -
DATA-LO-BUS-L

onm-ouri

AOR-LO-CLK-H

ADR-MD-BUS-L

System
Bus

\ 2,,,ATe~~ Bus

Figure 5.37. Data Path Block Diagram of Implementation of the 16-Bit Computer System.

the other control signals needed in the system have been specified. We are ready
to set up the microcode control section of the computer. Before doing that, how-
ever, we will consider one more portion of the circuitry. This system is using an
8-bit processor to simulate the action of a 16 bit-processor, and hence must be
able to do 16-bit arithmetic. In fact, to increment the program counter, a 24-bit
addition must be possible. To accomplish that we have included the circuitry
shown in Figure 5.39 to control the carry into the processor. As seen by the
logic, under the control of the MIR the carry into the ALU (ALU-CJN-H) can be
forced to zero, forced to one, set to the carry out of the previous cycle (uCRY-H),
or set to MCRY-H. MCRY-H is the cany bit from the status register of the 16-bit
machine, which is not shown. This control of the cany input allows the designer

Chap. 5: Control System Design 247

Register Tr i- State

SYSBUS Driver

IN-CLK

OE-BUS

117W Dl7:Ol 017:01 117:01

Tr i- State Register
Or l v e r

(a)

OE OUT

DTABUS

SYSBUS + -
01731 OIXO! PlEOl 11R01

DOUT - -C

I Register I Tr i- Sta te
Or i ve r

Figure 5.38. Components of the Data and Address Portions of
Microcoded System; (a) Bidirectional Data Register for Microcode
Example, @) Address Driver for Microcode Example.

total flexibility; multiprecision adds can be achieved by doing 8 bits at a time and
feeding the carry to the next cycle through uCRY-H. Adds of 32-bit words can be
done at the assembly language level, and the microcode would then select MCRY-
H as the carry in the appropriate cycle.

With this set of control bits identified, we will proceed with the design pro-
cess. It should be noted that the design is not complete, and more control lines
would be required for the entire system. In the horizontal microcode approach
there will be 1 bit in the MIR for each control line. This results in a very wide
word, but tl~c clock cycle time is as small as possible, and the available parallel-
ism is at a maximum. Figure 5.40 shows a diagram of the resulting system. A
more detailed schematic diagram is found in Appendix B.

'The diagram shows a system with the same general organization as seen in
Figure 5.33. The 2910 provides the address information, and the microcode
memory modules supply the microinstruction to the MR. The bits comprising the

Chap. 5: Control System Design

Table 5.3. Additional Control Lines for 16-Bit Computer.

Sixnu1 Name Definition

MEM-H

READ-H

ADR-VALID-H

DATA-VALID-H

DATOA-H

DATOB-H

DATOC-H

DATIA-H

DATIB-H

DATIC-H

STRT-H

CLR-H

IOPLS-H

MSKO-H

INTA-H

DCHA-H

DCHI-H

DCHO-H

IORST-H

Asserted when the transfer is for memory.

Asserted when the transfer is a read (to CPU).

Asserted when address valid;
deasserted at end of cycle.

Asserted (by CPU for write, by device
for read) when data valid.

A control line; asserted on output.

B control line; asserted on output.

C control line; asserted on output.

A control line; asserted on input.

B cout~ol line; asserted on input.

C control line; assertcd on input.

Start control line; asserted when
needed by UO instruction.

Clear control line; asserted when
needed by YO instruction.

YO pulse; asserted when needed
by YO instruction.

Mask out; asserted during MSKO instructiorr.

Interrupt acknowledge; asserted
during €NTA instruction.

Data channel acknowledge; asserted at
beginning of data channel cycle.

Data channel input; asserted for channel input.

Data channel output; asserted for channel output.

YO reset; asserted during IORST
instruction. console reset.

Figure 5.39. Cany Control Circuitry for 16-Bit Computer System.

MIR can be loosely grouped into three categories: bits controlling the microcode
address system, bits controlling data flow on the data path, and bits controlling
interaction with other machines. We will briefly discuss some points concerning
each of these sections.

The address control section has four lines (SEQ-INSTR) to control the func-
tion of the 2910. When these lines identify a conditional type of instruction, the
action of the module is further specified by the condition code and condition code

Chap. 5: Control System Design 249

TEST
CONDITION

INPUTS

I

L

, CC-ENBL-L

CC-SELECT (2:Ol-H

C-AOR(9:Ol-H

CONST(7:O)-H

Figure 5.40. Logic Diagram for Horizontal Microcode Control.

enable (CC-ENBL) lines. The condition code is actually selected from a number
of available possibilities by CC-SELECT. We have shown eight possible inputs;
additional inputs could be considered by allowing a larger multiplexer and another
select line. These lines control the function of the 2910, but occasionally addi-
tional information is required by the sequencer. For example, if the instruction to
execute is a jump or jump subroutine, then the target address must be supplied,
which is the function of the MICODE-ADRJN lines.

There are three sources of information into the sequencer, each of which has
responsibility for a different kind of information.

The control address driver (CNTRL ADR DRVR) is the selected source when PL
is asserted, and provides information from the MIR. This allows address infor-
mation to be directed to the sequencer directly from the microcode.

The second source, the map ROM (MAP ROM), is selected when the MAP signal
is asserted. This allows a designer to map bit patterns loaded into the

Chap. 5: Control System Design

Microcode Memory

(Ricro Instruction Register)

Figure 5.40. (conr.) Logic Diagram for Horizontal Microcode Control.

instruction register (INSTR REG) to specific addresses in microcode memory at
which the necessary instruction sequence is found.

The final source for address information is the vector driver, which accepts an
address from an external source and supplies that address when the VEC signal
is asserted. This allows an address to be supplied directly from a user-defined
source.

As can be seen from the diagram, the sequencer requires 18 lines to control these
functions, and these lines form the first part of the MIR.

The control and data lines of the data path elements are the next to be
included in the MIR. The CONST lines allow a known value to be injected into
the system. This is very useful for providing values to be used as constants,
masks, and match values. The A and B address lines (A-ADR, B-ADR) are
required by the 2901 ALU to specify the addresses needed for register
identification. The instruction lines (INSTR) specify the action to be taken by the

Chap. 5: Control System Design 25 1

Table 5.4. Bit Fields for Microcode of Table 5.5.

Number Radix
of of

Label bits Representation Function

ADR

SEQ INS
CC EN
CC SEL
SEQ ADDR
DATA CONS
A ADR
B ADR
ALU INS
CRY SEL
BUS SRC
BUS DEST
MEM UO BITS

Address; number of bits depends on implementation
(10 bits in this example).

Sequencer instruction; bits to I lines on 2910.
Condition code enable.
Condition code select; address of condition to test.
Sequencer address; lines to provide address for jumps.
Data constant; for constants to bus.
A address lines of 2901.
B address lines of 2901.
Instruction lines of 2901.
Carry select lines.
Bus source lines.
Bus destination lines.
Bits for memory and YO interaction.

ALU. If the instruction to be executed requires a carry input. then the CRY-SEL
lines specify the appropriate carry information. These 27 lines conaol the pro-
cessing accomplished by the processing section of the system, in addition to pro-
viding constants as needed.

The remainder of the bits are those required to control the individual ele-
ments of the system. By allowing total control of the lines (since each control
line is independent of the others) the maximum parallelism is possible. For exarn-
ple, all of the extemal registers can be cleared by creating a zero value on the bus
(all bits zero in constant field, assert CONST-BUS-L) and assert all of the appropri-
ate clock lines. This would allow loading of six registers simultaneously. The
bits in the microcode word also contain the control bits identified in Table 5.3 for
interaction with external units. This last section of the MIR, which contains the
control lines for the data path and the interaction with extemal devices, contains
35 bits.

One of the best ways to become familiar with the system and its capabilities
and weaknesses is to prepare microcode for it. To this end we will look at a few
lines of code that do two simple functions: simulate the action of an ADD A, B
instruction and a JUMP instruction. These instructions are broken into separate
fetch and execute portions, and the following assumptions are made: the 24-bit
stack limit register comprises registers 5, 6, and 7 in the 2901s; the 24-bit stack
pointer comprises registers 8,9 , and 10 in the 2901s; the 24-bit program counter is
contained in registers 11, 12, and 13; 16 bits of instruction are located in registers
14 and 15 in the 2901s; the A and B registers are coincident with memory loca-
tions 00016 and (byte addresses), and are stored in memory.

The microcode is contained in Table 5.5, which can be confusing if not
approached in a regular fashion. Each of the headings in Table 5.5 identifies a
group of bits, and their definitions representations are given in Table 5.4. Each
microcode word identifies a single operation, but since there are a large number of
bits, a correspondingly large number of things can happen during each microcode
cycle. Each group of bits identifies an action to be performed by the system.
Required macro operations are accomplished stepwise by a succession of micro
operations. Table 5.5 contains three sections of micro operations.

Chap. 5: Control System Design

The first section (addresses OAO to OA8) is the code for the fetch portion. Note
that thc function of lhis code is to do PC -t MAR, which talies thee 8-bit
transfers, at the same time that it does PC + 2 -t PC. Note also that the bus
destination lines are normally high in this implementation, so that (see the
instruction at OAl) when a value is available on the bus (a bus source line is
asserted), that value can be loaded into the appropriate register at the end of the
cycle. This occurs because the 0 becomes a 1 at the next clock pulse, creating
a rising edge that causes the required load of information. Another thing to
note is that the memory interaction is started by the instruction at location OA4,
and the instruction at location OA5 waits for the memory to respond before con-
tinuing. Instructions located at 0A6 and 0A7 move 16 bits of insmction into
the internal IR, as well as the 8 most significant bits to the IR that addresses the
MAP ROM. The instruction at location 0A8 causes the sequencer to jump to the
address specified by the MAP ROM, which will be the beginning of the code for
the appropriate macro instruction. For this example, that address will either be
OF2 or 121; in general, the address can map to any appropriate location.

The second section of code (addresses OF2 to 100) performs the ADD A, B
instruction. The address zero is forced into the MAR, and that value (the A
value) is copied to temporary locations in the 2901s (registers 2 and 3). Then
the address two is placed in the MAR, and that value is added to the temporary
already in the 2901s. Then the result is written back, and control moves to the
fetch portion to continue execution. Again note the memory interaction: the
action is initialized by the microcode, and the microcode continues when the
memory responds.

The final section of code (addresses 121 to 129) is for the JUMP instruction.
The assumption here is that the instruction is actually 32 bits long - 8 bits of
op code and 24 bits for the target address. The fetch section has placed 8 of
the 24 address bits in the internal IR, in register 15. So, the first part of this
code duplicates the fetch action to obtain the next 2 bytes. These bytes are
then transferred from the data registers to the address registers, along with the
value contained in register 15. The microcode then moves back to the fetch
portion to proceed with the program. Note here that the maximum speed is not
attained, since the work done by the .instruction at location 127 could be done
with the work done by the instruction at location 125, and the time required for
the execution of the instruction would be reduced by one cycle.

Other observations can be made concerning the microcode in Table 5.5.
Some of the fields are not used much of the time, and some of the fields have
only a small number of legal patterns. This is one of the observations that gives
rise to the use of vertical microcode. We wish to reduce the number of bits
required in a microcode word, but we still wish to be able to do all of the neces-
sary functions. The resulting system uses single fields for multiple functions, and
combines patterns into decoded information. For our example, we will combine
the functions of the 2910 address, the data constant. the A and B addresses for the
2901% and the ALU carry select into a single field. In addition, we will combim
the bits required for bus source into one field, bus destination into another, and
further encode the bits required for the memory-I/O interaction. The resulting sys-
tem is shown in Figure 5.41. A schematic showing the detailed connections of
the components is included in Appendix B.

This system is very much like the system shown in Figure 5.40. The con-
trol signals are identical; however, there are limitations on how many control

Chap. 5: Control System Deslgn 253

Table 55. Horizontal Microcode for Fetch. ADD A.B. and JUMP.

SEQ CC CC SEQ DATA A B ALU CRY BUS BUS
ADR INS EN SEL ADR CONS ADR ADR INS SEL SRC DEST

4 bits 1 bit 3 bits I0 bits 8 bits 4 bits 4 bits 9 bits 2 bits 8 bits 8 bits

ddd, dl, d2 d, ddd,, dd,, dl6 d,, ddds dd2 d . . . d 2 d . . . d l

OAO E
OAl E
0A2 E
0A3 E
0A4 E
OA5 3
0A6 E
0A7 E
OA8 2

OF2 E
OF3 E
OF4 3
OF5 E
OF6 E
OF7 E
OF3 E
OF9 3
OFA E
OFB E
OFC E
OFD E
OFE E
OFF 3
100 3

121 E
122 E
123 E
124 E
125 E
126 3
127 E
128 E
129 3

XXX

XXX

XXX

XXX

XXX

OAS
XXX

XXX

XXX

XXX

XXX

OF4
XXX

XXX

XXX

XXX

OF9
XXX

XXX

XXX

XXX

XXX

OFF
0 A0

XXX

XXX

XXX

XXX

xxx
126
XXX

XXX

OAO

10111111 11111111
01111111 11111101
01111111 11111011
01111111 11110111
11111111 11111111
11111111 01011111
11101111 11111111
11011111 11111110
11111111 11111111

1 O l l l l l l 1111OOO1
11111111 11111111
11111111 01011111
11101111 11111111
11011111 11111111
10111111 11111101
11111111 11111111
11111111 01011111
11101111 11111111
11011111 11111111
01111111 11101111
01111111 10111111
11110111 l l l l l l l l
11110111 l l l l l l l l
11111111 11111111

l O 1 l l l l l 11111111
01111111 11111101
Ol l l11 l l 11111011
01111111 11110111
11111111 11111111
11111111 01011111
11111111 11111111
11101111 11111111
11011111 11111111

signals can be asserted at any given time. For example, one of the functions of
the horizontal microcode example was to load a zero value into three registers
simultaneously; in this implementation that would require three separate instruc-
tions, since only'one destination line can be asserted at any time. Also, the hor-
izontal microcode method has independent address and data fields in the code; it
would be possible to jump to one address and load a constant in the same cycle.
With the vertical microcode implementation one field is used for both these func-
tions; hence, one could not load an arbitrary constant and perform a microcode
jump at the same time. This type of system is, in general, slower than the hor-
izontal microcode system, since more instructions are required, and the cycle time
is longer. However, the number of bits required in the microcode word is smaller,
and the total number of bits (number of words x number of bitslword) is, in

Chap. 5: Control System Design

I Table 5.5. (cot~r.) Horirontal Microcode for Fetch. ADD A.B. and JUMP.

hlEM VO
BITS ADR
19 b ~ t s

d , . . d, *d*K

0000000000000000000 OAO
0000000000000000000 OAl
00~KXK)(IOOOOOO~XlO(~O 0A2
00MMMM0000000000 0A3
111- 0A4
111- OA5
0000000000000000000 0A6
0000000000000000000 0A7
0000000000000000000 OA8

0000000000000000000 OF2
1110000000000000000 OF3
111- OF4
0000000000000000000 OF5
0000000000000000000 OF6
ooooooooooooooooooo on
111- OF8
1110000000000000000 OF9
OOOOOOOOOOOOOOOOOOO OFA
0000000000000000000 OFB
OOOOOOOOOOOOOOOOOOO OFC
OOOOOOOOOOOOOOOOOOO OFD
10 1 OOOOOOOOOOOOOOOO OFE
101- OFF
0000000000000000000 100

0000000000000000000 1 2 1
0000000000000000000 122
0000000000000000000 123
0000000000000000000 124
1 1 1 OOOOOOOOOOOOOOOO 1 25
1 1 1 OOOOOOOOOOOOOOOO 1 26
0000000000000000000 127
0000000000000000000 128
0000000000000000000 129

PC + MAR; increment PC (PC = RII. R12. R13)
Move constant 02, , to Q reg of 2901.
R I I -+ MAR,4; increment R I I.
R12 --) hlAR,, ,; inc R 12 with previous cmy .
R13 -3 hlAR,,.,,; ~ I I L R13 with previous carry.
MEM bits initiate memory read action.
Stay here till memory ready; 0 -+ 1 on destination lines loads result.
Move LSB to R14.
Move MSB to R15 and IR.
Jump to address provided by MAP ROM.

0 4 MAR
MEM bits initiate memory read action.
Stay here till memory ready; 0 + I on destination lines loads result.
LSB of mem value to R2.
MSB of mem value to R3.
02,, + MAR,,
MEM bits initiate memory read action.
Stay here till memory ready; 0 + 1 on destination lines load; result.
Add LSB of memory to R2.
Add MSB of memory to R3 with previous carry.
R2 + MEM,,
R3 -+ MEM,,,
MEM bits initiate memory write action.
Wait here till memory done.
Jump back to address 0AO16 for next fetch.

Move constant 02,, to Q register of 2901.
R I I + MAR,,; increment R11.
R12 + MAR,,,; inc R12 with previous carry.
R13 + MAR,,.,,; inc R13 with previous carry.
MEM bits initiate memory read action.
Stay here till memory ready; 0 + 1 on destination lines loads result.
Move first byte to PC from R15.
Move second byte to PC from MBR.
Move third byte to PC from MBR; jump to fetch.

general, smaller. For this example, the number of bits in the microcode word
decreased from 80 bits (horizontal) to 45 bits (vertical), a decrease of over 40 per-
cent in the number of lines required.

The method a designer uses to combine functions and lines into groups, and
the amount of overlap used in a system, reflect the design choices made in the
design process. If a designer is using 8-bit parts, he may attempt to end up with a
system that uses a multiple of 8 bits. If a designer is constrained by power
requirements, he may combine as many fields as possible into one. Any of a
number of different requirements will influence the choices made in the process.
This example brings out several techniques that can be used, which we point out
here. The constant lines, the address lines, and the A and B addresses from the
ALU have been combined into a single field. This constrains what can be done at

Chap. 5: Control System Design 255

TEST
CDNDlTlON

INPUTS

NOTE: CONLINES ARE fiLLTlPLY USED: 1NSTRlB:Ol-H I
A-ADR13:OI-H = CON_LINES(7:4)-H
0-ADR(3:OI-H = CON-LINES13:Ol-H
CONSTl7:Ol-H = CON-LINESl7:Ol-H
CRY-SELl1:Ol-H = CON_LINESI9:81-H

Figure 5.41. Logic Diagram for Venical Microcode Control.

one time, since only one function can be performed by tllc C O N L m U at any one
timc. 0.k. L A ~ L I I ~ ~ L ib L ~ I C ju~~~p/load C O I I ~ I I C ~ . Another esalnplc ia lo. d d mg coil-
stants into the ALU: since the B address lines specify the destination of a write
function, information that is to go to an arbitrary register in the ALU is first placed
in the Q register, then moved to the appropriate register. Thus, what was accom-
plished in a single cycle in the previous system requires two cycles in this system.

In general. it is not a good idea to permit more than one driver to place a
value on a bus at any one time. 'Ihus, there is danger in the scheme of the hor-
izontal microcode implementation, since it is possible to enable more than one
source to the bus simultaneously. This possibility has been removed in the verti-
cal microcode example by the use of a decoder; now only one line can be asserted
at any one time. A decoder has also been used to identify the destination, which
removes the possibility of sending information to two or more destinations simul-
taneously. Since there were eight destinations in the original system. a three to
eight decoder has been used to do this decoding; however, since we want the abil-
ity to select none of the destinations. an additional line has been added to enable
the entire destination function. A different technique for not asserting any line

Chap. 5: Control System Design

Figure 5.41. (con0 Logic Diagram lor Venical Micmcode Control

has been used for the VO bits: the zero line is left unused. Thus a value of zero
on the VO bit lines will result in no action. Finally. those lines that cannot be
independently asserted, such as READ, MEM, and the like, are not combined, but
left to be asserted as needed by the system.

Some care must be taken to guarantee correct system function with respect
to the nonideal nature of the decoders. W e decoder used for the bus source is
always enabled. and the microcode system can control only the address lines.
This will result in glitches on the decoder output lines as the internal logic
changes to agree with changes of the address lines. The outputs of this decoder
are connected to ei-state enable lines of devices that can assert information onto
the data bus. These glitches will not cause problems with the data being enabled
onto the bus, since the glitches always occur at the beginning of the cycle when
the bus lines have not assumed the correct assertion level.

Chap. 5: Control System Deslgn 257

Table 5.6.

SEQ CC CC CON ALU BUS BUS UO MEM
ADR INST EN SEL L N l 3 MST SRC DEST BITS BITS ADR Comment

4 bits I bit 3 bits 10 &IS 9 bits 3 bits 4 bits 4 bits 6 bits
ddd,, d,, d, d, ddd,, Wd, d, d,, d,, d . , . dl dd4.

OAO
OA l
0A2
0A3
0A4
OAS
0A6
0A7
OA8
0A9

OF2
o n
OF4
OF5
OF6
O R
OF8
OF9
OFA
OFB
OFC
OFD
OFE
OFF
100
101
102
103
104

121
I22
123
124
125
I26
127
128
129
12A

E x x
E x x
E x x
E x x
E x x
3 0 1
E x x
E x x
E x x
2 x x

E x x
E x x
E x x
E x x
3 0 1
E x x
E x x
E x x
E x x
E x x
3 0 1
E x x
E x x
E x x
E x x
E x x
E x x
3 0 1
3 1 0

E x x
E x x
E x x
E x x
E x x
3 0 1
E x x
E x x
E x x
3 1 0

002 037 I
OBB 200 0
2CC 203 0
2DD 203 0
xxx 144 0
OAS 144 0
xxx 144 0
xxE 337 3
x x F 337 2
xxx 144 0

000 144 1
000 144 I
000 144 1
xxx 144 0
OF6 144 0
xxx 144 0
xx2 337 3
x d 337 2
002 144 1
xxx 144 0
OFC 144 0
xxx 144 0
022 305 3
233 305 2
x2x 134 0
x3x 134 0
xxx 144 0
103 I44 0
OAO 144 0

002 037 1
OBB 200 0
2CC 203 0
2DD 203 0
xxx 144 0
126 144 0
xFB 334 0
xxc 337 3
xxD 337 2
OAO 144 0

0 000000 OAO
0 000000 OAl
0 000000 0A2
0 000000 0A3
0 111000 0A4
0 I l l000 OA5
0 l110000A6
0 1110000A7
0 000000 OA8
0 000000 0A9

0 000000 OF2
o o c m ~ o n
0 000000 OF4
0 111000 OF5
0 111000 OF6
0 111000OR
0 111000 OF8
0 111000 OF9
0 000000 OFA
0 l l l 0 0 0 0 F B
0 111000 0FC
0 I l l000 OFD
0 I l l000 OFE
0 I l l000 OFF
0 000000 100
0 000000 101
0 101000 I02
0 101000 103
0 MXW)o 104

0 000000 121
0 000000 122
0 000000 I23
0 000000 124
0 11 1000 1254
0 111000 I26
0 111000 127
0 111000 I28
0 000000 129
0 000000 IZA

PC -+ MAR; PC is stored in R I I . R12. R13; first, 02,, to Q reg.
RI I -+ MAR,,; increment RI I.
RI2 -+ MAR,, ,; increment R12 with last cany.
R13 -+ MAR,.,,; increment R13 with last carry.
MEM lines initiate read action.
Wait for memory to respond.
Strobe MEM LSB to accept info.
Strobe MEM MSB to accept info; transfer LSB to R14.
Transfer MEM MSB to R15 and IR.
Jump to address provided by MAP ROM.

Set MAR,, to zero.
Set MAR,,, to zero.
Set MAR,.,, lo zero.
MEM lines initiate read action.
Wait for memory to respond.
Strobe MEM LSB to accept info.
Strobe MEM MSB to accept info; transfer LSB lo R2.
Transfer MEM MSB to R3.
Load MAR,, with 02,(.
MEM lines initiate read action.
Wait for memory to respond.
Strobe MEM LSB to accept info.
Strobe MEM MSB to accept info; add LSB to R2.
Add MEM MSB to R3 with last cany.
Transfer contents of R2 to MEM LSB.
Transfer conlents of R3 to MEM MSB.
MEM lines initiate write action.
Wait for memory to respond.
Jump back to fetch microcode (address OAO).

PC -+ MAR; 02,, to Q reg.
RI I -+ MAR,* increment RI I.
R12 -t increment R12 with last carry.
R13 -+ MAR,.,,: increment R13 with last carry.
MEM lines initiate read action.
Wait for memory to respond.
SIrobe MEM LSB to accepl info: also copy RIS to R I I.
Strobe MEM MSB to accept info; ms fe r LSB to RI2.
Transfer MEM MSB to R13.
Jump back to fetch microcode (address OAO).

The decoder associated with the bus destination control is connected in a
different fashion. Note that the system clock has been connected to the low true
enable of this decoder. Connecting the clock to the decoder enable in this fashion
will assert the designated signal only during the last half of the cycle, which will
prevent glitches from occurring on the decoder output lines. This prevents
unwanted action to occur since these lines activate edge higgered functions. The
VO and memory bits do not have this enabling function, which indicates that the
system designer was willing to live with the glitches which would occur on these

Chap. 5: Control System Design

lines. If this is unacceptable. then steps must be taken to be sure that glitches do
not cause unwanted results.

As with the horizontal microcode example, one of the best ways to get a
feel for the system capabilities is a prepare microcode for it. Tab!e 5.6 contains
the microcode for the same instructions. ADD A, B and JUMP. The fields of Table
5.6 are similar to the fields of Table 5.5. The two differences are that the CON
lines in Table 5.6 (10 bits, base 16 representation) combine the function of the
SEQ ADR. DATA CONS. A ADR, and B ADR, fields of Table 5.5, and the bus and
I@ lines are encoded in the vertical example, and hence represented in base 16.
The code in Table 5.6 performs the same functions as that in Table 5.5, but more
instructions are required. For example, at OF2 of the horizontal code is an instruc-
tion that loads zem into three registers simultaneously. With the vertical example
this requires the three instructions located at OF2, On, and 0F4. This is an exam-
ple of the way that code will "grow" in the vertical dimension to perform a func-
tion, when compared to a horizontal implementation.

The above examples demonstrate that microcode is a technique that enables
a designer to perform work with a state machine type of controller, and have the
action dictated by the contents of a memory. The microinstruction register of the
microcode machine serves the function of the present state register to follow the
progress of the work to be performed, and the MIR and microcode memory com-
bine do the work of the decode portion of a state machine. The net result is to
allow assenion of control signals using techniques of low level programming.
This permits nested subroutines and conditional jumps to be pan of a hardware
designer's collection of usable techniques. The designer can then make design
choices based on the constraints of his particular design to accomplish the goals
of his system, using whatever combination of horizontal and vertical techniques
may be most beneficial.

One final comment is in order concerning the design examples used in this
chapter. The examples have become increasingly complex, starting with the sim-
ple, seven state controller for the FtR filter function, and ending with a controller
capable of implementing the necessary control for an entire computer system.
Thus, the microcode mechanisms can appear to be much more complex than the
state machine or delay methods of control, when the principles on which aU of the
controllers are based are the same. The apparent complexity stems from the com-
plexity of the data path being controlled, not from an inherently complex tech-
nique.

5.8. Microcode Machine Example: V r X 111780

The microcoded method of control implenentation has been used by many
machines since the appropriate memory technology became available. Each of
these machines has a unique blend of techniques to generate its control signals.
One of theese examples was introduced by Digital Equipment Corporation in the
1970s. This system. the VAX 11P80. is a 32-bit machine with general purpose
computing capabilities. The system has been utilized for scientific, business, and
office applications, and a variety of models with different speeds and complexity
are now available.

The VAX 11p80 itself has a microcoded engine to control about 2,600
integrated circuits on 19 circuit boards. The clock cycle time of the system is
200 nsec, applicable to both the internal modules and the bus that allows con-

Chop. 5: Control System Design 259

VIRTUAL
ADDRESI

r

nection of memory modules and peripherals. The organization of the system is
shown in Figure 5.42. The diagram is done to reflect the physical division of the
system as well as the logical connections available. As can be seen from the
figure. a number of data paths are used to transfer information between system
components. The synchronous backplane interconnect (SBI) is the mechanism
used to transfer information from memory and peripheral devices into the CPU
itself. This bus is time shared between address and data, and the highest data rate
will occur when an address is transferred. followed by two 32-bit data words.
This results in a data rate of 8 bytes in 3 cycles (600 nsec). or 13.3 Mbytes per
second. The SBI control interacts with devices on the SBI to perform whatever
transfers are required by the system.

The internal data bus Is used to move information between any of the major
system components as required by the system. This is in contrast to the other
buses with a more specific purpose. The control store bus is composed of the
microcode bits, and is used to control the action of all of the system components.
The memory data bus is used to transfer information to and from memory. This
includes the cache memory as well as the memory accessible via the SBI. The
virtual address provides the address of information requested by the program in
the virtual address space; this must be converted to an appropriate physical
address, which will be placed on the physical address bus. Finally, the micropro-
gram control bus is used to address the appropriate microcode word, which will
be extracted from the control store and used to specify the appropriate action.

Some of the blocks connected by these buses are self-explanatory. The SBI
control is used to contml the interaction with devices that transfer information via
the SBI. The data cache is a small cache used to store the most recently used
pieces of information. The translation buffer and decode, which ascertains the

. PHYSICAL ADDHESS BUS

,
Y7C4JS BACKPUNE INTERCONNECT

BUFFER 1 1
I I

CCUTROL STORE BUS

-l---l
DATA INSTRUCTION ROM
PATHS BUFFER AND CONTROL CONTROL INTERRUPTS

DECODE STORE STORE ARBITRATOR

1
MILHOPROGRAM CONTROL

t
INTERNAL DATA BUS

MICRO
SEQUENCER

Figure 5.42. Block Diagram of the VAX 111780 Computer.

Chap. 5: Control System Design

machine instruction to be performed, provides the appropriate control to the
microcode machine.

The microcode machine itself is contained in the micro sequencer, the ROM
control store, and the RAM control store. The ROM control store contains the
microcode for the basic inshuctions of the system; this includes a comprehensive
set of variable length instructions for general computing, and some other functions
needed by the system. The ROM control store provides storage for 4.096 microin-
structions. The RAM control store serves the same basic function, storing
microinstructions for system use. However, the content of the RAM control store
must be provided by the user at an appropriate time, usually when the system is
initialized. This capability of writing new information to the control memory is
often called writable control store (WCS). The WCS can be used to provide
corrections to faulty operations in permanent control store, or to speed up certain
often executed sequences. such as operating system primatives. Having these
functions in WCS allows changing them to grow with system needs or to correct
faulty operation. It also allows users to tailor their system to enhance its opera-
tion in a specific environment. In any case, the system operates by having the
micro sequencer supply a microcode address, and the ROM or RAM control store
supplying the micminstruction.

The microinshuction is a 96-bit word whose format is given in Figure 5.43.
The 96 bits are broken into 30 different fields, each of which controls part of the
function of the machine. Table 5.7 identifies the various fields and the elements
they control. Each microinstruction is capable of controlling the hardware of the
system to do the work required. The techniques used are the same techniques we
have already identified. Some fields provide an address to a multiplexer function
(SMX, EBMX. RMX, KMX, etc.) to select one operand or source of data for a

EALU JMP

31 ~ 2 9 26 25 24 n zz 20 19 $8 17 16

47 46 43 42 41 35 34 32

EBMX SMX

63 58 57 55 54 51 50 48

I

Figure 5.43. Fields of VAX I Ill80 Microinstzuctions.

Chap. 5: Control System Design

SCK 1 CCK IEK

PCK

95 82 81 88 87 85 04 82 81 80

MSC 1 VAK I FEK

SPO ADS

SGN

MTClClD 1 FS

QK KMX

IBC 1 DK

SIISCM

BMX SHF AMX

Table 5.7. Microcode Fields in VAX 111780.

Mnemonic Name Function

JMP
EALU
SMX
EBMX

CCK
SCK
FEK
V A
MSC
IEK

PCK

SPO

FS
MCTICID

ADS
SGN

QK
SUSCM

KMX
SUB

ALU
ACF

BEN
RMX
DT
AMX
BMX
SHF
DK
IBC

Jump Address
Exponent ALU
SMX Select
EBMX Select
Condition Code

Miscellaneous
Interrupt and
Exception
Address Count
Control
Scratch Pad
Operation
Function Select
Memory and
Control Bus
Address Select
Sign Control
Q Reg Control
Shift Input
Control
Constants Select
Subroutine
Control
ALU Control
Accelerator
Control
Branch Enable
Reg Mux Control
Data Type
A Mux Select
B Mux Select
ALU Shift Control
D Reg Control
Instruction Buffer
Control

Address of next microinstruction.
Control ALU for exponent arithmetic.
Control selection of value for S operand.
Control selection of value for EB operand.
Identify bit for condition code test.

Control various functions not included elsewhere.
Control function of intempt logic.

Control program counter and address specificalion.

Control function of scratch pad area.

Identify function of MCrICID bits.
Control bus transfers.

Identify source of effective address.
Identify source of sign bit.
Control action of Q register.
Control action of shift network.

Select source, value of constants.
Provide control for subroutine linkage.

Specify function performed by ALU.
Identify function of accelerator.

Control branching function.
Specify source of operand in reg mux.
Identify type of data being operated on.
Control value supplied by A Mux.
Control value supplied by B Mux.
Control action of ALU shifter.
Control action of operand in D register.
Specify action of instruction buffer.

specific register or function. Other fields use a single bit to identify the function
of another field (FS). The ALU bits directly control the function of the arithmetic
element in the system. The SUB bits identify the action to be taken on a micro-
code subroutine. Each of the fields controls action to occur somewhere in the sys-
tem in each 200 nsec clock cycle.

One of the interesting techniques exemplified by this system is the selection
o f the next microinstruction. The JMP field of each microinstruction, which is not
multiplexed with any other function, identifies the next microinstruction to be exe-
cuted Thus, there is no requirement that successive microinstructions be located
in successive locations in microstore. The microinstructions can be located in any

C h a p . 5: Control System Design

available locations in memory. If some choice of next microinstruction is
required - that is, if a conditional branch of some type is needed - this is con-
trolled by the BEN field. The effect is to modify the address in the IMP field in
some predetermined fashion. For example, the JMP field can provide the most
significant portion of an address, and the least significant bits can be provided by
sign bits, processor state indicators, or other machine information. This provides
a multiway branch capability, so that the next instruction is one of 8, 16, or 32
possible instructions, based on the function selected by the BEN field. The multi-
way branch ability permits multiple decisions simultaneously, since more than one
bit can be used in the selection of the next microinstruction. The requirement for
this to be effective is that the set of instructions that are possible next instructions
for a specific microinstruction be. located at an appropriate address boundary in
thp mirmrnrk This ir one of the reason< t h ~ t each microinstruction carries the
address of the next microinstruction, since placing sets of next instructions on
address boundaries fragments the available microcode memory.

The VAX 11/780 is a good example of a microcoded system, but certainly
not the only example. The technique has been used in a host of different
machines to provide a programmable control system that can be utilized in a regu-
lar system fashion.

5.9. Control System Design: Asserting Control Lines
In a Timely Fashion

This chapter has dealt with the concepts and practices involved in producing a
control system for a digital device. The device can be as simple as a counter or
as complex as a computer, but the principles involved in the process are the same.
Before the design of the control system can begin, it is imperative that the data
path be defined, and that the appropriate control lines be identified. This process
must not only identify the lines to be controlled, but also specify the assertion lev-
els required to perform the work. Armed with this information the designer can
then proceed to provide a control section which will assert the lines in an
appropriate fashion.

Once the set of signals required for control of a system has been identified,
then the order of assertion and other specific information must be determined.
This process requires that the designer be familiar with the system components.
their uses, and their limitations. But the action of the control section can be
specified by utilizing system knowledge, design techniques, and desired
behavioral characteristics. This specification may take the form of a state
diagram, which is useful for direct implementation of state machines. Or it may
take the form of a flow diagram, which can provide the basis for a delay line or
shift register method of control signal implementation. The state diagram or flow
diagram can also be useful in preparing a system that utilizes microcode tech-
niques for asserting the control lines. Each of the techniques can be effectively
utilized where the system characteristics call for behavior of one type or another.
For example, RISC machines generally need extremely fast control, but being rela-
tively simple the amount of logic required for direct implementation permits ran-
dom logic in the control system. On the other hand, CISC machines often require
numerous steps and decisions to perform a specific instruction, so microcode is
very appropriate. The designer, then, has the responsibility of selecting the imple-
mentation technique that will maximize effective use of system resources.

Chap. 5: Control System Design

5.10. Problems

5.1 Consider the block diagram given in Figure P5.1 for the data path of a com-
puter. This data path is to be used to implement a single address machine.
The following information about the machine may or may not be useful.
The add is not cascadable (no double precision adds.) The memory is fast
RAM. The MAR ignores bits higher than its address space, which are
transferred to it. The only control lines you have access to are those listed
on the diagram. No initialization is needed for any of the logic. Design a
sequencer for this data path that will do SUBTRACT, LER-SHIFT, and
NEGATE. Use microcoding techniques. Include an RTL description of the
transfers necessary. Give a logic diagram (at a reasonable level) of the con-
trol section, specify the bits in the microinstruction word, and give the
microcode needed. The available microcode sequencer has the following
pins: address out, address in, JUMP-H (test input) and CONTROL-H. When
CONTROL-H is L (normal case) the instruction obtained is the next in
sequence. When CONTROL-H is H, then an conditional jump is performed,
with the address input being used as the source of address if JUMP-H is
asserted. The ALU is capable of the following operations:

CI CO Function

5.2 For the single address machine shown in Figure P5. .1, design a sequencer
that will do ADD or OR, using some technique other than microcoding.
Include RTL description of the transfers needed and the logic of the control
section.

Temporary Program UAR Uernory
Register Counter

Figure PS.l. Block Diagram for Single Address Machine.

I n s t r u c t ~ o n
Decode

NEGATE-H

,e 1 LEFT-SHFT-H

Instruct ion
Reg~ster

Chap. 5: Control System Design

5.3 Consider the controller for the finite impulse response digital filter of Sec-
tion 5.3. Implement the controller using the technique of individual delays.
How can thc loop be implemented?

5.4 Consider the controller for the finite impulse response digital filter of Sec-
tion 5.3. Implement the controller using the shift register techrique to
develop the timing pulses. How can the loop be implemented?

5.5 The state machine controller shown in Figure 5.27 can be used to implement
the state diagram shown in Figure 5.23. Provide the necessary additional
details, and specify the contents of the memory to create the system. That
is:

a. Identify which of the address lines of the memory are provided by the
present state lines, and which are provided by external inputs.

b. Identify which of the memory outputs are used for next state detemina-
tion and which are used for signal generation.

c. Create a table that specifies the next state patterns and the signal line pat-
terns for each of the appropriate addresses.

A computer system can be a very valuable tool for this project, using a sim-
ple program to help develop the basic patterns, and an editor system to
modify the patterns as necessary.

5.6 Design a control system using the state machine technique for the shift and
add multiply system of Figure 3.9. Implement the state machine with the
multiplexer method (like Figure 5.13). and then do the design with random
logic for next state determination. Compare the two implementatioris ba.sed
on board space, power consumption, and ease of implementation.

5.7 Design a controller for the Booth's algorithm multiplier of Figure 3.14. Use
a state machine implementation mechanism.

5.8 Consider the block diagram of a portion of the control system for a unit that
utilizes a microcoded organization. The contents of the microcode memory
for the original organization are as follows:

addr contents of addr

Chop. 5: Control System Design

- To Control Points

Modified
Organization

Original
Organization

A

1 1 1 1 1 1 1
Micro Instruction Register

J J J J 4 . c

---, Sequencer

To Control Points

Microcode
Memory

Sequencer

Figure P5.8. Alternative Microcode Organizations.

Give the contents of Memory 1 and Memory 2 for the modified organiza-
tion. What are the advantages, if any, of the second organization?

+

5.9 Design a state machine controller for the divider shown in Figure 3.23. (See
also Appendix B.) Use a memory for the next state logic, and specify the
contents of the memory for all of the appropriate locations.

Memory 1

A &
Register 1

5.10 Consider the horizontally organized microcode system of Figure 5.40;
details of this implementation are shown in Appendix B. Some microcode
appears in Table 5.5. Write microcode to implement a JUMP instruction, a
JUMP TO SUBROUTINE instruction, and a RETURN instruction. State what-
ever assumptions that you need to make.

I >

5.11 Modify the microcode shown in Table 5.5 so that the fetch portion of the
microcode checks for the existence of an interrupt. Include microcode to
handle the interrupt. State whatever assumptions you need to make.

Memory 2

5.12 Consider the vertically organized microcode system of Figure 5.41. Some
of the microcode appears in Table 5.6. Write microcode for a memory-to-
memory add instruction with the format ADD <addrl> <addr2>. Assume
that the two addresses (<addrl> and <addr2>) are stored in locations
directly following the instruction in program memory.

& & & & & & &
Register 2

I 4 4 J J J . l

5.13 Obtain data sheets for the devices of Figure 5.40 (see also Appendix B) and
determine the minimum cycle time for the data path and the minimum cycle
time for the control path.

Chap. 5: Control System Design

RAPI_OEa I
RM-CS B

C CS g M1Ai15:OI
RAM-WE a

A

1

PC-LO
>Lo 5

PC-INC 6 INlI%Ol
> lr s

I
I

PC-BUS

IR-LO

I
REG-CLK

REG-BUS

12-CLK

T I -CLK M z 11mm

g T2 REG

I
ALU-SI

SYSTEM
BUS

\DDRESS
iEGISTER

!EMORY

'ROGRAM
:OMTER

[NSTRUCTION
IEGI STER

?EGISTER
+DDRESS
lux

SENERAL
'URPOSE
iEGISTERS

4RITHNETIC
UNIT

CONSTANT

Figure PS.14. Logic for Data Path of 16-Bit Computer System.

5.14 The diagram shown in Figure P5.14 is a single bus system that can be used
to implement a simple 16-bit machine. Using horizontal microcode tech-
niques, create microcode to perform the ADD instruction with possibilities
for register direct, register indirect, register indirect autoincrement (post
incrcn~d) , all(! register indirect auto-decrement (predecrement). That is:

a. determine the contents of the microinstruction register

b. complete the naming for the control signals of the system

Chap. 5: Control System Design

c. identify the work needed (RTL) to perform the ADD instruction

d. give the microcode bit patterns needed to accomplish the work

State any assumptions needed to complete the specification.

5.15 The diagram shown in Figure P5.14 can be used to implement a 16-bit
machine. Using vertical microcode techniques, create microcode to perform
a NEGATE instruction, an INCREMENT instruction, and a CLEAR instruction.
To accomplish this:

a. determine which control lines can be activated by a decoded field in a
microinstmction word, and which lines can share a field

b. specify the contents of the microinstruction register

c. complete the naming for the control signals of the system

d. give the RTL needed to perform the instructions

e. give the microcode bit patterns needed to perform the work of the RTL
specified

State any assumptions needed to complete the specification.

5.16 For the data path shown in Figure P5.14, implement with horizontal micro-
code techniques a JUMP SUBROUTINE instruction and a RETURN (from sub-
routine) instruction. Include with the answer the following information:

a. the format of the microinstruction

b. the proper naming of the control signals

c. the RTL for the instructions

d. the microcode bit patterns that will implement the instructions

Assume that R15 of the register set is designated as the stack pointer. Also
assume that the memory for this problem is slow RAM, and that once the
MAR has been set, three cycles are needed to writelread the memory.

5.17 Repeat Roblem 5.16, using vertical microcode techniques. How can the bus
destination signals be created in a manner that will prevent glitches from
occurring? For the system of Figure P5.14, the following information may
be useful:

The memory write enable, chip select, and output enable are all asserted
low.

The program counter can be loaded or incremented; both actions occur on
the low-to-high transition of the control signal.

When one register is identified by an instruction, the register address mux
will feed the correct lines to the general purpose registers.

When two registers are specified by an instruction, the register address
mux will feed the pattern identifying the first register to the general
purpose registers unless SECOND-REG-H is asserted, at which point
the pattern identifying the second register will be directed to the gen-
eral purpose registers.

The arithmetic unit operates according to the following table:

Chap. 5: Control System Design

S1 SO Function

0 0 F=AplusB
0 I F=AnandB
1 0 F = B
I 1 F = A o r B

The CONST field allows the controller to place a known value into the sys-
tem.

5.1 1. References and Readings

[AMD85] Advanced Micm Devices, Bipolar Microprocessor Logic and Interface Data
Book. Sunnyvale. CA: Advanced Micro Devices, 1985.

[AMD88] Advanced Micro Devices. PAL Device Handbook. Sunnyvale, CA: Advanced
Micm Devices. 1988.

[AnLeBl] Anderson, T., and P. A. Lee. Fault Tolerance, Principles and Practice. Engle-
wood Cliffs, NJ: Rentice Hall International, 1981.

[AndrllO] Andrews, M.. Principles of Firmware Engineering in Micr~porgram Control.
Potomac, MD: Computer Science Press. 1980.

[Arms811 Armstrong, R. A,, "Applying CAD to Gate Arrays Speeds 32-bit Minicomputer
Design," Electronics. Vol. 54, No. 1, January 13, 1981, pp. 167-173.

[BaRa821 Baneji, D. K., and J. Raymond, Elements of Microprogramming. Englewood
Cliffs, NJ: Prentice-Hall, 1982.

[Ban851 Bartee, T. C., Digital Computer Fundamentals. 6th edition. New Yo*: McGraw
Hill Book Company. 1985.

[Boot841 Booth. T. L.. Introdunion lo Computer Engineering: Hardware and Software
Design. New Yo*: John Wiley & Sons. 1984.

[Bm89] Breeding. K. J., Digital Design Fundamentals. Englewood Cliffs, NJ: Prentice
Hall, 1989.

[BuCaW] Burger, R. M., R. K. Calvin, W. C. Holton, et al., 'The Impact of Ks on Com-
puter Technology," Computer. Vol. 17, No. 10, October 1984, pp. 88-96.

[Damn1851 Damrn, W., "Design and Specification of Microprogrammed Computer Archi-
tectures." Proceeding of the 18th Annual Workshop on Microprogramming. Wash-
ington, DC: IEEE Computer Society Press. 1985, pp. 3-9.

[DasgllO] Dasgupta, S.. "Some Aspects of High Level Microprogramming," ACM Comput-
ing Surveys. Vol. 12, No. 3, September 1980, pp. 295-324.

[Dasg79] Dasgupta, S., "The Organization of Microprogram Stores," ACM Computing Sur-
veys. Vol. 11, No. 1, March 1979, pp. 39-65.

[Davi86] Davidson. S.. "Progress in High Level Microprogramming," IEEE Sofiware. Vol.
3, No. 4, July 1986, pp. 19-26.

[ErLa85] Ercegovac, M. D., and T. Lang, Digifal Systems and HardwarelFinnware Algo-
rithms. New York: John Wiley & Sons. 1985.

[Flet80] Fletcher, W. I.. An Engineering Approach to Digital Design. Englewood Cliffs,
NJ: Prentice Hall, 1980.

C h a p . 5: Control System Design

