6

Input and Output Operations

We have discussed several of the characteristics attributed to a machine. including
the methods of information representation and the ingtruction set. We have also
discused methods of designing the functional elements, such as the arithmetic unit
or the control unit. But it is not sufficient to compute; the resultsof the computa-
tion must be made available to other systems. These systems may be other com-
puters, computer peripherals. or similar devices. Eventually, the information may
need to be presented in a form easily understood by humans, many interface sys-
tems convert information not only into readable text, but also graphic images.
synthesized sound, or some other suitableform.

The term "input" is attached t o the process of transferring information into
the computer, and "output™ to the transfer of information out of the machine.
When both are possible, it is simply “10.” In this chapter we will discuss the
methods used t o perform these transfers, sone of which we have already alluded
to in the considerationof instruction sets. This will include mechanisms used for
asynchronous and synchronous bus transfers, time multiplexingof informationon
buses, and so on. We will also consider arbitration techniques, which decide who
is the "owner" of a bus when a transfer is made. And we will include both pro-
grammed control and direct memory transfers to move information. Included
with the discussions are a number of examples that illustrate the concepts and
techniques. Once the ideas are understood at both the conceptual and implemen-
tation level. YO systems and interface modules can be more easily designed and
understood.

The instruction set architecture of a machine will determine the apparent
organization of the /O system. That is t he mechanismsenvisioned for system /0
will be one of the factors considered in the process d the creation of the instrue-
tion set of the system. In many respects, the computer system will be judged by
its ahility to coordinate information transfer in a reasonable fashion. A more
comprehensive view of the total system impact is obtained by considering

n

a2

6.1

computer system performance from a systems aspect, taking into account the
characteristics of the CPU, the periphera devices, and the transfer mechanisms.
(See, for example, [LaZa84).) Our intention is to understand the principlesutilized
in the transfer mechanisms.

AsynchronousBus Transfers

The block diagram of Figure 6.1 indicatesthat @ number of functional units can
exchange information over a common communication medium: the bus. The
transfer of information will begin when one of the modules recognizesa need to
communicate with another module. This need will result from any of a number of
mechanisms, such as a processor module that must obtain the status of an inter-
face module, or an /O modulethat must transfer information into system memory.
If a module has the ability to control the bus. we cal it a**bus master.” In general,
there will be severa bus mastersin a bus-oriented system. When a master needs
to transfer information, it will request ownership of the bus. The process of alo-
cating control of the bus to a bus master is caled arbitration, and we will discuss
arbitration mechanisms in a later section. When a master has obtained control
over the bus, it then initiates a bus transfer by activating the appropriate lines.
The module activated by this transaction (the one that responds to the master) is
called the "bus dave™ The set of rules or algorithm utilized in this process is
called the "bus communication protocol.” This protocol will identify the sequence
of events to occur in the processof transferring information, and specify the tim-
ing requirements of the ransfer.

In this section we will discuss the exchange of information over the lines
assuming an asynchronous protocol. That is, the modules of the bus system do
not share a common clock, and the transfer proceeds in an asynchronousmanner.
In the communication process, the master and the slave assert signalson common
communication linesin a predetermined manner so thet the transfer can proceed,
We will assumethat the arbitration process has been completed and that the mas-
ter is in control of the bus. The master is now capable of initiating the transfer.
and will do so by activatingthe appropriatebus lines according to the defined pro-
tocol. The bus lines (except power and ground, which are also distributed along
thebus) belong to one of thres groups: address, data, or control, as shown in Fig-
ure 62

The address lines are used to identify the target of the transaction. That is,
the master places an addressonto the address lines that will uniquely identify the
location to be used for the transfer. The number of addresslines that can be used
for this function determine the number of addressable locations, sinceN linesare
capable of selecting one of 2¥ locations. This address is the only mechanism the
master has to identify the target module. All of the modules that can respond to
addresses to perform transfers are connected to the address bus, and they recelve

i A e

Figure 6.1. Module Organization for Bused Systems.

Chap. 6: Input and Output Operations

Master Slave

Controi Lines

Address Lines

Data Lines

Figure 62 Bus Lines Connecting the
Master and the Save

this address and compare it to their assigned address space. The address should
identify only one module: if more than one module recognizes the address. the
transaction will not function properly. (As usual. there are exceptionsto this rule,
which we will note later.) Once a master has initiated a transfer. it will alow a
predetermined amount of time for the address comparisons, then proceed with the
transaction. The slave module with an assigned address matching the target
address will respond to the master, and the transaction will proceed governed by
the assertion of the control lines. The control lines are used to synchronize the
action between the master and the slave modules. The mechanism for this is
shown in Figure 6.3. This figure shows the address lines as a group. the data
lines as a group, and three of the control lines. A number of other control lines
will he involved with the arbitration mechanism. but for this discusson we will
limit ourselves to the three control lines identitied in the figure: READ-H. REQH.
and ACK-H. The READH line identifies a read transaction when it is asserted.
That is. when it is high, the master module is reading a location fmm the slave
module. When the READH line is not asserted (when it is low), the master
module is writing to the slave module. The READ-H line has the same timing
requirements as the address lines, which are explained in conjunction with the
other control lines.

The two lines that control the timing and sequence of the events involved in
the transaction are the request line(REQH) and the acknowledge line(ACK:H) .
The write cycle proceeds as shown in Figure 6.3(a). The master, which has
already obtained control of the bus, asserts the address of the desired location.
Thistime is identified astg in the figure. A finite time is required for this address
to propagate to al of the slave modules and be decoded by them. so the master
must wait for a specific period before asserting the request line. The amount of
time required is a function of the technology in which the hardware is imple-
mented, and the physical and electrica characteristics of the bus. When the
required time period has passed, the master asserts the request line (timety). This
is then accepted by all of the slave modules, but only the module with the match-
ing address will respond. When the slave has performed the requested action,
which in this case is to accept the dataon the data lines, the slave module asserts
the acknowledge line (timet;). When the master detects the assertionof the ack-
nowledge line. it recognizes that the work of the transaction has been completed.
So it releasesthe request line (time t3), and when the Slave detects the release of
the request line, it releasesthe acknowledge line (time t4). The master must keep
the address lines asserted after the releaseof the request line to prevent any spuri-
ous action that may occur if the addresschanges before the releaseof the request

Chap. 6: Input and Output Operations 273

Previous. \y Address asserted Dy N\
Address Address A" Master at time t

!

Praviou Data asserted by
Data Data/A* Master at time 1.

Pravious
READ-H Cycle A

REQH 2 /’\\\

ACK-H / i_____

Y 4 2 '3 Ul
{a) WriteCycle
Address Prevess Y (ddiess aifgred by _ fem
Data | X"—_ Slave at tme g pa

READ-H
| 3
REQH \x
2 / \ 4
ACK-H / _____
| | |
! i i i
Y Y4 L kS YW's
(b) Read Cycle
Figure 6.3. Read and Write Transactions for Asynch Handshake Protocol.

274 Chap.6: Input and Output Operations

line has propagated through the decode logic of the slave modules. This may be
accomplished by holding the addresslines for a specific time after the release of
the request signal, or until the master detects the release of the acknowledge by
the dave module. This mechanism is sometimes called the four event bus
transfer. since four events (1 — 2 — 3 — 4 in Figure 6.2) are involved in per-
forming the transfer.

The read transaction is amost identical to the write, and the appropriate
linesare shown in Figure 6.3(b). The major differencesare that the read control
line is asserted and that the datais now asserted by the slave module. The master
begins the transaction as before, by asserting the address and waiting the neces-
sary time for propagation delay and skew. Even though the master may assert all
of the address lines simultaneously, they will not all arrive at the decoder of the
dave modules simultaneously, since the electrical characteristicsof the bus and
the propagation delays of the address lines may be different from one another.
The time differencefrom the arrival of the first signal to the arrival of the last sig-
nd is called the skew time. and the bus protocol must include a sufficient time
delay to account for the maximum expected skew time of the bus. When the mas-
ter has alowed time for propagation delay and skew, it then asserts the request
line (time ty), asking the addressed dave to provide the information. The
addressed slave module performs whatever action is required to obtain the data: if
it is a memory device this will require a memory cycle. but if it is an interface
module the information may be readily available. When the data has been
obtained. the slave module asserts the data onto the data bus. as well as asserting
the acknowledge line (tme t-). At this point the master must wan for a period of
ume to dlow for skew, then 1t accepts the data und releases the request line (time
t3). When the dave detects the release of the request line. it releases the ack-
nowledge line. Some time after the release of the request line, the master is free
to release the address.

This basic asynchronous communication protocol is usad by a number of
different microprocessorsand minicomputers. It has the advantageof not needing
a specific clock, since the transaction proceeds according to the signals asserted
by each module. Since the modules can proceed as fast as their functionsallow,
the transactionscan proceed as fast as data is available. The drawback is that the
built-in delays, needed to alow for signal skew and propagation delay, force a
relatively long minimum cycle time. For the UNI BUS, which is the bus on which
the Digital Equipment Corporation PDP1t series is based, a typica minimum
cycletimeis400 ns Nevertheless, becauseof its simplicity and ease of function,
the asynchmnous bus protocol is used extensively. One exampleis the Multibus,
which originated with some products from Intel.

Example 6.1: Asynchronous protocol: The Multibus is an asynchronous
protocol that fits the discussion above. What are the signad and control lines
utilized by the Multibus, and the associated delays?

The asynchronousprotocol, as described in the above paragraphsand
in Figure 6.3, is directly applicable to the Multibus, with a few
modificationsin nomenclature. The signals on the Multibus are all asserted
low, S0t he address, data. and control lines have a low voltagefor a *1” and
a high voltage for a “0.” Then are 20 address lines and 16 data lines,
which gives an addressable space of one megabyte. The address lines are
usd for both /0 and memory addresses. After a master has asserted the
address, it waitsfor 50 nsec before,asserting the request ling; this is the time

Chop. 6: Input and Output Operations 275

276

alowed for skew and delay. The appropriate request line is asserted low (as
opposed to the high assertion shown in Figure 6.3). Instead of having a
read line to identify the direction of the transfer, the Multibus has separate
request lines for memory read (MRDC-L), nenory write (MWTC-L), [0 read
(IORC-L), and 10 write (IOWC-L). This allowsthe address lines to be used
by memory and /O devices, and the appropriate interface module will
respond only when the necessary control line is asserted. When a slave
module responds, regardlessof the request line that activated the module, it
will assert a transfer acknowledgesignal (XACK-L), in the manner shown in
Figure 63.

Example 6.2: Interface to asynchronous system: Assume that a floating
point multiplier is to be interfaced to the Multibus in the /O space. This
multiplier requires two 32-bit words to be available, one in Register X and
one in Regigter Y. Design an interface module for the Multibus that will
read and write to Register X and Register v, and also cause the multiply to
occur when accessed. Assume that the multiply process will take a variable
amount of time depending on the data. and that the multiplier will assert a
DONE signd when the answer isavailable.

The Multibus protocol allows 16-hit bus masters to address4.0% dif-
ferent /O locations, so we will assume that the floating point multiplier in
question is to occupy the following addresses:

Address Request Line Action

DFO,, IOWC-L Write to Register X (1 ow16 bits).
IORC-L Reed framRegister x (low 16 bits).
DFl,, IOWC-L Wiite to Regiger x (high 16 bits).
DFly, IORCL Read from Register X (high 16 bits).
DF2,, IONGL Wiite to Register Y (low 16 hits).
DR, IORCL Reed from Register Y (low 16 bits).
DF3,, IONGL Write to Register Y (high 16 hits).
DF3,, IORGL Reed from Register Y (high 16 bits).
DF4,, IORGL Read from Result (low 16 bits).
DF5,s IORGL Reed from Result (high 16 bits).

The design of this system is relatively straightforward, since the logic is
basically combinational in nature. The only timing requirements are those
imposed by the bus protocol, and the sequentiality of action defined by the
protocol is also enforced by the master. The data path for this interface
module is shown in Figure 6.4(a). -The registers are made up of positive
edge triggered devices ('273s), which hold the information for the floating
point multiplier. Note that for this system an inverting bus transceiver has
been insarted intothe data path. This has the benefit of presenting only one
electrical load to the data bus, but incurs the penalty of an additiona delay,
which needs to be included in the design process. Many multipliers have
registers built in, s0in one sensethe external registers are redundant. How-
ever, the specification indicatesthat these values should also be made avail-
able to the bus upon request, 0 the registersare needed to provide that
capability. Tri-statedrivers (*541s) are used to send the information to the
internal databus, which is enabled ont 0 the Multibusdata lines by the tran-
sceiver. This pathisalsoused by the product from the multiplier.

Chop.6: Inputand Output Operations

-7°0 2jdwexg JO S{Npojy AITHIo1] SNQUIN JOJ Yred EIRQ ‘(S)p'9 3anBid

-(0:S1)VIvVa SNATLINK
o
oz [| |
[}
o 43430/ 43133 155 S, 1¥Ss 19S san(sA A pue X of
* SJUIATIP BJeIS-1d)
ﬂuv 9 [] A"v
7-5N8 W WOY4 } } ﬂ } —
H-SNE W OL NI ROT A
= - N3 HOIH A
H-10:51)VIVO TWNYIINI 791 -
I-N3 MO X
g e |, T-N3 HIIH X
L] — — AL 0N
195 I-N3 MO 00Md - -
- 100EH - 2 107S110 (0:S1)0 —1
O {0 £ 15 10n00d e H-(OIIEATRA A
—— ={0. 4%
£L2: "™ HY0 MOT A
1#S:e nNn—
J-N3 HOIH 00dd -
bt 19236130 €0:67)0 [y
3anpoud Joj
SHIALID YIS-1J)] £1Z. < T
-] ow
-_H n| L i (025310 t0:81)0 -~
Jatiduying -
££24™ Ao o7 X
—— —-—
[[Hi3l} e 103500 t0:5110 ="
4 H-(0:1£)3NWA X
< e
— £ = £L2, ™ -
H-3NO0 Wd4 s H-1WIS Hdd H-Y10 HOIH X

’ SanvA A puv X
04 sJa3s16ay

277

The control signals used for this sysem arc derived by the logic
shown in Figure 6.4(b). The address linesarc checked for a proper address
pattern. However, since the address pattern could be assrted for memory
addresses as well as the /0 addressesneeded for this system, no action is

FOS-L
FDA-L

P FO3-L
o) FO2-L
P FOI-L
FOO-L

o FROM_M_BUS-L
DELAVED_FROM-L
T0_M_BUS-H
DELAYED_10-H
¥_OR_V-H

PROD-H

DELAYED-FROM-L

oo j > Y _HIGH CLK-H
FO2-L '-—3) Y _LOW_CLK-H
_— vj > % HIGH_ELK-H

e

FOO-L > \ X_LOW ELK-H
fj b X LOWCLK-H

TO_M_BUS-H N -

S L "@_;PLPE_M
FD4-L r—:g'_\\n PROD LOW EN-L
FD3-L »j) Y_HIGH_EN-L
— - '—3'_‘% ¥ LOW EN-L

P—

ADDRESS (11:0)=H
—

10WC-L

ADRC1120)

I0RC-L,

53722383828

g3

FDI-L X —EN-L
FD0-L j) X _LOW_EN-L

DELAYED T0-H

FPM_START-H

FROM_M_BUS-L
DELAYED_FROM-L lﬁ XACK-L

Figure 6.4(b). Control Signals for Multibus | nterface Module of
Example 6.2.

278 Chap. 6: Input and Output Operations

taken until the [0 request linesare asserted. If the transaction is a write to
the X or v register, then the Multibusdata linesar e enabled onto the intemal
data bus (with FROM_M_BUS-L}, and after adelay to dlow the data to pro
pagate to the registers, the appropriate clock line is asserted. Figure 6.4(b)
does not indicate how this delay is obtained. but a number of different
methods could be utilized, from a tuned delay line to a synchronous method
using the clock provided on the Multibus. The slave response to the /O
request lines is through the acknowledge (XACK-L), which is seized when
the address is recognized, but not asserted until the transaction is complete.
For filling the X and Y registers the acknowledge will be asserted when the
delay has been completed. Similarly, reading the X or Y registers, or the
lower bits of the product, involves a delay to alow the data to propagate
onto the intemal data bus and then to the Multibus data lines. When a pro-
pagation delay time has been accounted for. then the acknowledge can be
asserted. Requesting the higher bits of the product causes a multiply to
occur. so the acknowledge is asserted when the done signa is asserted by
the multiplier. This necessitates that the most significant word of the pro-
duct be requested first to achieve proper results.

The Multibus. and many other buses that use the asynchronous handshaking
techniqueto transfer information, can be effectively utilized to passdatain asin-
gle bus environment. However. the lines required to perform this type of transfer
are rather numerous. The Multibus utilizes 41 lines to pertorm these transfers.
and the UNIBUS uses 38 lines. One o the ways to reduce the number of wires
required is to time multiplex the address and data lines. That is. one set of lines
containsthe addressfor part of the time and data for another part; the information
content of the lines is determined by the control signals. Thus, the total number
of wires required to perform transfers is reduced. The tradeoff is between the
number of wireson the bus (or pinson the integrated circuit, or on the edgeof the
board, or ...) and the increased time required to perform the transfer. Since the
lines are utilized for two functions (address and data), then the number of control
lines will increase. Nevertheless, the total number of wiresis decreased, and the
speed of the bus is sufficient for many applications.

Example 63: Time muitiplexed asynchronous protocol: Digital Equipment
Corporation has built a number of devices besed on a protocol and physical
configurationcalled the Q-Bus. This is a time multiplexed data/address bus
with an asynchronousprotocol. What is the sequence of eventsinvolved in
performing a read and a write with the Q-Bus?

The waveformsfor the transfersof the Q-Busare shown in Figure 65.
This isan abbreviated version, since therear e control lines to indicate when
atransfer is in the /O page, when it is a byte transfer, and so on. But the
basic principlesare demonstrated by the figure. The levelsindicated in the
figure are logical levels only, since the assertion level of the signalson the
bus itself is negative, so that on the busa “1” isindicated by a low voltage
level. The read cycle [Figure 6.5(2)] begins with the master asserting the
addresson the time multiplexed data/address lines (DAL), then alowing a
tire for propagation delay and skew. The SYNC | i e is then asserted (time
ty), which is used by dave devices to latch the address information as
needed. The master releases the DAL lies, and a time tp asserts DIN,
which indicatesto the addressed Slave that the transactionis a read. From
this point the transaction follows the four event sequence, with DN

Chap. 6: Input and Output Operations 279

DAL X Address X X Data

/.

swe_:/ ___
DIN__! / \
RPLY. / \
t:o ‘:1 ‘:2 ':3 ':4 t:s t:e;
DAL X Address X Data X
SYNC / AN
DOUT__! [T\
RPLY [T\
oY 2 004 4 ':s 's

Figure 6.5. Read and \ite Cycles on a Time Multiplexed Bs: (a) Reed Cyde (b) \fite

Cyde

representing t he request ling, t3), and then within 125 nsec asserts the data.
The master responds by releasingDIN (timety), When the dave detectsthe
release f DIN, it releases RALY (limets), and then releasesthe DAL lines.
Thelagt event in the cycleis the release of the SYNC signd by the master in

preparation for the next cycle.

The wite cycleshom in Figure 6.5(%) is very similarto the above
sequence d events. The mgor differenceisthe assertion d the dataon the
DAL lines by the master after the address has been issued and synchronized
by the SYNC signdl. Once again. the four event cycle mechanismis used.
The master (dentifies the cycle as awite cycle by asserting DOJT. The
slave accepts the data and asserts RPLY. The naster then releases DOUT.
which allows t he Slaveto release RPLY, The bus protocd calls fa the mas-
ter to hold the data on the DAL hes for & least 175 nsec after releasing
DOJT. And as before, the termination of the cycle is indicated by releasing

SYNC

Chap. 6: Input and Output Operations

6.2.

The asynchronous method for information transfer can be very useful for
exchanging data in time multiplexed systems and in systems with dedicated
address and data lines It is simple to comprehend, and interface modules
between the bus and external devices can be designed and constructed in a rela-
tively easy manner. The absence of a clock allows the transaction to proceed at
the rate @ which data (and address) information is available. Nevertheless, the
data rates for this type of transfer are in general not as high as those for a syn-
chronous protocol. Before we discuss the reasonsfor this, let's examine some of
the arbitration mechanisms used to identify the module that will control the bus
transaction.

Arbitration Mechanisms

In any system with multiple master modules. that is, modules that can assert the
control lines on the bus, a mechanism must be provided for arbitration. Using
some predefined priority agorithm, this mechanism must uniquely identify the
module that will take charge of the bus for the next transfer. It is possibleto have
this decision follow each bus cycle, so that there is an arbitration between each
bus transfer. But in general the arbitration process is performed in parallel with
data transfers. so that during the current transfer arbitration is being performed for
the next transfer. In this section we will consider arbitration mechanisms and how
they can be utilized to assure that control is passed to the proper module.

Three basic mechanismscan be utilized for making the decision as to the
proper module to control the bus for the next cycle. These are shown in Figure
66. In each case. the masters(M,, My, ...) request accessto the bus by assertinga
bus request (BR). When the arbitration mechanism is ready to select a new master
module to control the bus, it will assert the bus grant signal (BG) associated with
that module. The behavior of the devices receiving the bus grant depends on the
type of arbitration mechanism involved, as we shall see. When a device needs
access to the bus and it detects that the bus grant line has been asserted, then it
will be the next to receive control of the bus. If more than one master requests
ownership of the bus at the same time, then the arbitration process selects one.
and the remaining modules must wait until a later time for their respective
transfers.

The fastest arbitration mechanismis the parallel system. In this system each
master module has a dedicated connection to the arbitration unit, and when a mas-
ter module needs control of the bus it will assert its assigned bus request line.
The arbitration unit then has the responsibility of dealing with the system in some
predetermined fashion. That is, the algorithm utilized in the design of the arbitra-
tion unit is not limited by the interconnection system. The arbitration can be done
on the basis of first-asserted/first-served, round robin, assigned priority levels, or
whatever mechanism is determined in the design process. Thus, this mechanism
allowsa variety of possibilities, from extremely simple to extremely complex.

In the parallel scheme, when the arbitration unit has determinedthet a nas-
ter module has priority and should have control of the bus, it asserts the bus grant
line associated with the master module. This module can then control the
transferson thebus. The data, address, and handshakelinesare controlled by t he
selected master, and when the master no longer requiresaccess to the bus, it will
releaset he bus requestsignal. The parallel arbitration systemis then free to allow
other master modules to gain access to thebus.

Chap. 6: Input and Output Operations 281

Arbitration Unit
_er BR BG BR BG R BG BR_BG
M0 M1 M2 M3 M4
T [T] T

Data. Address. Handshake Cines

BGI—8GI BGOI—BGI BGO—{BGI BGO|—{BGI BGO|—
Arbitration Mo M, M, M,
Unit BR BR _BR_ B8R
. T T 7 T T T
| 1 I T

Data. Address. Handshake Lines

Arbitration
Unit M° M1 M2 Ma
BR A C BR A C BRA C BR A C BR A C
Bus: Request I T L L 1
Address

Data. Address. Handshake Lines

Figure 6.6. Bus Arbitration Mechanism.

The detailsof the trander mechanism will vary with each implementation.
but the parallé mechanism provides the highest speed Of arbitration. The cost for
this speed is the additional lines required to allow each possible naster direct
access to the arbitration unit, and the hardware costs associated With whatever
arbitration algorithm is implemented. The number O lines required could be
extensive, needing t W lines for each module as shown in the following example.

Chap. 6: Input and Output Operations

Another mechanism would need only one line per module, as we will see later.

Example 6.4: Parallel arbitration system: Design a parallel arbitration sys-
tem that will allow up to eight bus masters to access a common set of con-
trol lines. The assumed mechanism for master-slave data exchange is the
four event handshakethat has been discussed. If no bus master has control
of the bus, then the requests are to be synchronized by an internal 10 Mz
clock. If a master module has control of the common handshake lines, then
the requests &re synchronized on the trailing edge of REQ-H.

Thistype of a system can be easily constructed with a priority encoder
and a decoder, such as shown in Figure 6.7. Notice that the assertion levels
ae low in this example. When no request is pending for the bus (no bus
master requires use of the bus) the decoder is disabled, and no master has
control. The requests for access are synchronized by a 10 MHz clock, and
when one of the masters has made a request for the bus, the appropriate bus
grant line will be asserted. If more than one module has requested the bus.
then only the highest priority bus grant line will be asserted. Note that the
nature of the "148 priority encoder, with its asserted low outputs, inverts the
normal order on the decoder outputs.

The desired behavior, as defined above, is that the synchronization of
requests take place on the trailing edge of REQ when the bus is being ussd
by a bus master. The gates on the input of the clock of the synchronizing
register multiplex between the {0 MHz clock and the bus request to alow
this to happen. This simple mechanism is in general. not sufficient. since it
does nat preclude the possibility of glitches occurnng on the clock line
(What additional gating is required to assure that no glitches occur'?)

The example demonstratesthe simplicity with which parallel systemscan be
constructed. However, more exotic priority agorithms. such as first-asserted
firg-serviced. will lead to more complex implementations. But because of the
speed with which arbitration can proceed in this case. systems that need the per-
formancewill provide the lines necessary to allow parallel arbitration. Because of

r BUS_SELCTD-L BUS_SELCTD-H
ar 1273
::Z‘:: Quw 1] L;_———g - BG7-L
= D_.—_..
BREL Yo [[" BG6-L
y— e —
T Yol] spo— . BG3-L
D—_—-—_
BRS-L —C [g:ﬁ " BGA~-L
| o—__._
m-t du w . BG3-L
D—_—_—
Rt gr ap—7 " BG2-L
RO el o p—a_ " BGI-L
ol] » D——o~(n BGO-L
10MHZ-H — E>ox
oS SSLCTDL = =
Register Priority Deooder
Encoder

Figure @ SmplePadld ArbitrationSystem.

Chap.6 Input and Output Operations 283

the need to have dedicated lines to the master modules for paratlel arbitration, the
number of alowable masterson any system is fixed at the time of implementa-
tion. This places a fixed limit on the number of allowable masters. and the sys-
tem cannot be expanded beyond that limit in a parallel fashion. Expansion isone
of the benefits of the next type of system to be considered, the seria arbitration
system.

Serial arbitrationis a technique in which the bus grant linesof the bus mas-
ters are connected together in a serial fashion, asshown in Figure 6.6(b). Thereis
a single bus quest line, which is connected to all bus masters. The arbitration
unit is not aware of which bus master needs access to the bus, and so the arbitra-
tion mechanism is smplified to asserting the bus grant signa at the proper timein
the bus cycle. The arbitration unit is then responsible for examining the lines
controlling the transfers on the bus and deciding when control of the bus can be
given to a new master module. When the bus can be controlled by a new module,
the arbitration unit asserts a single bus grant line connected to the first module.
Since this module is the first to receive the bus grant signal, it has the highest
priority: a device can receive the bus grant signa only if the modules between it
and the arbitration unit do not need the bus Becauseof this connection method,
where one module passes the signal on to another in a serial fashion, this is
referred to a " daisy chain mechanism. And because of its seriad nature, there is
no limit to the number of devicesthat can be connected in this manner. However.
each additional device resultsin a longer maximum arbitration time.

The serial mechanism for bus arbitration needs a least three lines to func-
tion. athough more can he used. as indicated by the example below. The three
lines ure hus request. bus grant i, and hus grant Out. A master module indicates
that 1t needs to access the bus by asserting a common request line, as shown in
the tigure. This line is implemented in open collector technology, or some other
method that will alow multiple units to assert the signal smultaneously. The
arbitration unit uses this signal to identify when a new bus master needs access to
the bus, as described above. When the arbitration unit determinesthat a different
module can control the bus, it asserts the bus grant line. Each master receivest he
grant signd on its bus grant in ling, and if the module does not need to access the
bus, it asserts the bus grant out line. In this way the assertion of the bus grant
signal is pessad from one module to another, until it arrives at a module which
needs access to the bus. This module does not assert the bus grant out line, but
rather assumes ownership of the bus and performsthe needed transfer. A master
module of lower priority that needs accessto the bus will continue to assert the
quest line. and at a later time a new bus grant signa will be asserted by the
arbitration unit and passed to it.

The priority scheme of this system is strictly physical: devices of higher
priority are physically (and hence electrically)closer to the arbitration unit. Dev-
ices of lower priority are farther away from the arbitration unit. The number of
devicesincluded has a direct effect an the speed of the function. Since each dev-
ice must check the bus grant signal in a serial fashion, the tota time for the arbi-
tration function is proportional to the number of deviceson the bus. Of course,
the closer the device is to the arbitration unit (fewer modulesin between), the fas-
ter the operation. But since each module requires time to completet he bus grant
in to bus grant out sequence, there is a practical limit to the number of devices
that can be utilized.

Because of the serial nature of the arbitration process, care must be taken to
avoid the situation where two masters access the bus simuitaneously, This

Chap. & Input and Output Operations

possibility will arise in systems in which the modules operate asynchronously
with respect to each other and to the transactions taking place on the bus. In this
case, a modulecould qui r e access to the bus directly after the bus grant out sig-
el had been asserted to inform the next modulein the chain that it can accessthe
hus. I the first module is alowed to immediately command the bus and release
the bus grant out line, then both units could be in a situation where they ae

accessing the bus. A practical solution to this problem is to design the unitsto be
edge sensitive rather than level senstive. That is, the master modules would be
capable of taking ownershipof the bus only when the bus grant signd is changed
from its unasserted to its asserted level. Thereafter, the unit must wait until the
next assertion of the signal, even though it is currently asserted. This mechanism
will prevent more than one module from assuming control simultaneously.

Example 65: Serial arbitration system: The UNIBUS uses serid arbitration
to identify bus master modules that need access to the bus. What are the
lines involved in this arbitration process. and how does the protocol func-
tion? Also, what circuitry is need to connect to the arbitration lines to prop-
erly utilize the serial arbitration lines?

A number of linesin the UNIBUS are used by the master modules to
control access to the bus. For the purposes of understanding the mechan-
ism, we need consider only four signals: BR-L (bus request, asserted low),
BG-H (bus grant, asserted high), SACK-L (selection acknowledge. asserted
low), and BBSY-L (bus busy. asserted low). These lines and the relationship
between them are shown in Figure 6.8. The sequence of events begins a
ta. when the bus arbitration unit recognizes that a new arbitration cycle can
begin. since SACK is nor asserted. When a master module needs to transfer
information over the bus, it will signa the arbitration unit by asserting the
BR line (tg). The arbitration unit will then respond by asserting BG (tc).
Some time later (tp), the bus grant signa will be received & the master
module; there may be other master modules through which this signal has
pasd to reach the module that requested the transaction. When the bus
grant signal is received by the module needing the bus, it will #et pass the
signd on, and it will assert SACK. This signals the arbitration unit that the
arbitration process was successful, and it can now release the bus grant sig-
nd. At thesane time. BR will be released by the module, but this will not
necessarily nean that the line will return to its unasserted level, since
another master module may also be asserting the request line. When the
arbitration unit receives the assertion of SACK, it releases BG (tg). The
actual arbitration processis now complete, but the bus is still being used by
adifferent module. When the current bus master completesitscycle, it will
release BBSY (tg), signaling the next bus master that it has completed its
operation. The new bus master will wait for SSYN (not shown) to be
released, indicating that the slaveinvolved in thelast transfer isidle, and BG
to be released. At that time it will be able to control the transactions on the
bus The new bus master wiil then assert BBSY to signal the fact that it is
controlling the bus, and relase SACK, to allow the arbitration process to
select a new bus master.

A logic diagram of an system that does this is shown in Figure 69.
The gates receiving bus signals (RCV) and drive bus lines (DRV) have spe-
cial electrical characteristics that minimizet he electrical |oads placed on the
bus. Otherwise, the gates have the normal NAND a NOR function shown
by the shapeof the gate.

Chap. 6: Input and Output Operations 285

BRL

BG-H i

SACKL

BBSY-L i

th '8

REQUEST _BUS-H

'o k5 ¥ g

Fgure68 UNI BUS Bus Arbitration Lines

‘ BR- L

—-E.._.(/\”-‘"*_ J oo

SACK-L
o
=)

=ED
HI

—j; Hl
*l C . l,’, sncx-v.

v

el
3
Y

BT)

CLEAR _SATK-L

Hl ——————]

‘ ‘; L J]J) -.'m BG_OUT-H
[} [] Q

Figure 69. Logicfor UN BUS Bus Request-Bus Grant

The UNIBUS protocol was chosen for this example for three reasons.
First a great number of devices have been built to interface with the
UNIBUS. and 20 for sheer numbers this is a very prolific mechaniam.
Second, this example demonstratesthat the arbitration process can proceed
in parald with the transfer currently in progress. Many asynchronous buses
require that the current transaction terminate before arbitrating for owner-
shipof the bus. And third, the mechaniam described here is utilized in one
form or another by amost all asynchronous bus arbitration systems.

The protocol described in Example 65 is similar to many schemesthd use

the daisy chain method of arbitration. One of the problems that can arise with
this mechanism is the transfer of contral from one master to another. Although
the arbitration system can select a bus master to assume contral of the bus, the
actual transfer of control will not occur until the current bus master releases the

Chap. 6 Input and Output Operations

6.3.

BBSY line. Therefore. a bus master may control the bus for an extended period of
time, not alowing other modules access for transfers. In that sense, the protocol
is not "fair,”" and may not be applicable in some circumstances. To prevent this
type of device lockout, schemes can force the system to arbitrate for every
transfer, instead of arbitratingfor ownership. Or a a mechanism may be included
thet will forcea module to relinquish ownership of the bus and alow the arbitra-
tion process to find a new bus master.

The use of one kind of bus arbitration does not exclude the use of another.
The UNIBUS uses parald arbitration in combination with serial arbitration, as
does the VME bus. Paralld arbitration occurs in the UNIBUS because there are
five sets of BR-BG lines, each of which has a different priority. The accessto the
bus between these five sets isdone in a parale fashion. Each of the five sets of
BR-BG linesisaserid line, and operatesas describedin the exampleabove.

The find bus arbitration technique we are going to mention is polling,
which is shown in Figure 6.6(c). Here each master module has access to a com-
mon request line, which it will assert when it requires access to the common
resources. The arbitration unit must then decide which of dl of the possible
modules made the request. It does this by placing the addressof a master module
on the address lines and querying each in turn, until it finds the highest priority
module needing the bus. This method has the benefit that any priority scheme can
be implemented — FIFO, round robin, and so on. But the cost of the mechanism
is large in time requirements. For that reason it is amost never used for arbitra-
tion of bus lines. but it does find application in the arbitration of /O requests.
That is. a processor. under program control. will poll /0 devices to ascertain the
module requesting an Interrupt.

Smndrancussus Protocols

The term "synchronous bus" can refer to a number of different techniques for
transferring information between modules. The common characteristicof all of
these mechanisms is that a clocking signal is used to synchronize all of the
transfers. This restricts the length of the bus, since the signal must propagate to
all bus masters and bus slaves, and be received with a reasonabledegree of simul-
taneity at all locations. In this section we will consider sone of the mechanisms
thet can be used for synchronousdata transferson bus systems.

(ne type of a synchronous bus is not a multiple master, general purpose
bus. Thisis a bus bus system under the direct control of a central unit. This type
of system fitsinto the model shown in Figure 6.1, but each of the unitsis directly
connected to a master control unit. This central control unit then decides which
module is to assert information onto the bus, and which element is to accept the
information. That is, no general address is decoded by slave modules, but rather
t he central control unit selects both t he source and the destination. The micropro-
grammed modules studied in Chapter 5 are included in this classification. since
the contents of the bus are determined by the microcodeword during each micro
cycle.

Another bus protocol that is synchronous in some aspects is typified by
the bus connections of some high performance microprocessors. The M68020
has a protocol almost identical to that described above, except thet the mechan-
isms allow for dynamic bus sizing and other flexibility. The mode of operation
is synchronous with the system clock, giving the appearance of a synchronous

Chop. 6 input and Output Operations 287

mechanism. If the slave (memory, for example) is not able to respond to the pro-
cessor fast enough to alow continuous operation, the processor automatically
inserts idle bus periods, caled "wait states,” until the slave responds with the
desired cta Thus, the only difference in method is that the Ms8020 works in
increments of the basic system clock, rather than using completely asynchronous
signals.

Another bus protocol is used by a number of micmprocessors, and worksin
conjunction with the system clock. One of the problems that has become pre-
valent as integrated circuits have increased in complexity is providing enough pins
to transfer the information into and out of adevice. To minimizethe total number
of pins required for information transfer. some devices time multiplex the bus
lines to allow one set of pinsto present both addressand data information. Thus,
a processor with a 32-bit data path and a 32-bit address requirement can use one
set of 32 pins, and synchronizeall requests in such a way that all bus modules
know when the addressis available, and when the data is required.

A sample of the N$32332 protocol is presented in Figure 6.10(a), which
presentsa write cycle. The 32 bits of address and data share the time multiplexed
AD(31:0)-H lines: the presence of a vadid address is identified by ADSL, and the
data is synchronizedby VR TEL. The DDl NL line identifies the directionof data
transfer. The minimal transaction requiresfour cycles; the addressis presented in
the first cycle, and the data is available during later cycles. If the slave cannot
respond within the required time, the master can wait until the transaction is able
to proceed. This may occur. for example. if a dynamic memory is performing a
refresh cycle when the processor requests a transaction. Mogt systems that use
this technique will latch the address and create the appearanceof separate address
and data buses. A block diagram of one such arrangement is shown in Figure
6.10(b). To a slave device attached to the separate address and data lines, this
communication mechanism appears the same as those previoudy described: the
four event transaction proceedsin exactly the same way.

The time multiplexed data/address lines providesa mechanism to efficiently
utilize one scarce system resource, the number of pinson the device. But another
system resource that is not effectively utilized in the protocolsdescribed aboveis
time. The master must alert the slave that some information is nesded, and then
wait for the slave to respond. A more time efficient mechanismwould be to iden-
tify the basic componentsof a transfer and so design the protocol and the bus to
allow these components to occur simultaneoudy. This requires a greater com-
plexity on the part of both the master and slave modules, but it does more
efficiently utilize the wires used to connect the modules together.

One of the beneficial features of asynchronous protocols identified in Sec-
tion 61 is that the transaction proceeds as fast, or slow, as both sender and
receiver agree that the information can be transferred. If some event requires
more time, then the protocol essentially waitsfor the event to complete, and then
proceeds with the transfer. This provides for increased flexibility, and it aso pro-
vides for fairly smple interface modules. However, the overall data rates will be
higher if more capability is provided in both the sender and receiver to minimize
the amount of time that the bus lines are utilized to exchange the information.
This is the basic premise d synchronous protocols, and the mechanism provides
for time efficient useof the bus lines.

In the protocol described in Section 6.1 the bus master was responsiblefor
asserting the address, and then alowing time for propagation delays and signal
skew before asserting the request line to initiate action. One of the reasonsthet a

Chap. 6: Input and Output Operations

T T2 T3 T4 T
ok PHSIH || | | l l
\/ \ YT Next
AD(31:0)-H A %ss '/ ' Datal Out _Address |
ADS-L \ / _/
DDIN-L] / N
WRITE-L \
t
(@)
32201
Timing and Control
Unit
32332 32081
Central Floatin
Processing Point Ugit Agf,'}?grs —
Unit
Time Multiplexed

Address/Data Bus

(b}

Buffer

Figure 610. N$32332 Bus Transactions: (a) Timing Diagram for a Write Operation;
(b) Block Diagram of Interface | ogic.

Chap. 6: Input and Output Operations

289

synchronouspratocol is more time efficient than the asynchronous protocol is that
the action of al of the modules is coordinated by the presence of a common
clock. This establishes an exact time when the information must be present on
the bus, and when each module atached to the bus will know that information is
available. This establishes bounds on the time required to transfer the informa-
tion, and interface modules must all be designed to operate within those bounds.
Thus, this mechanism calls for the interface modules to meet a time standard,
rather than having the protocol adjust the time requirementsto satisfy the needs of
the various interface modules. The modules connecting to the bus must then be
capableof transferring information at the rate determined by the bus protocol.

The mechanism of data exchange for synchronous protocols operates on a
different set of principles than the asynchronous methods previoudy described,
and this leads to a dlightly different nomenclature when dealing with the units.
We will call the module that initiates a transaction a commander, because it sends
a command to another module. The command may or may not contain data,
depending on the type of transfer. The module that fields the command we will
cal a responder. since it responds to the request in an appropriate manner. As
with the asynchronous protocols. a number o different mechanismswill function
properly. We will describe first a sample mechanism for write and read. and then
examinea specific instantiation of a protocol.

There are four components of the transfer of information, and all four must
be completed for a successful transfer. We discussed each of these functionsin
the process of describing the asynchronous protocols and arbitration mechanisms,
but did not identify them as necessary congtituent parts of the transfers. These
componentsare:

1. Obrain control of the bus. This is the responsibility of the commanderand the
arbitration network. When a module requires a transfer, it communicates that
need to the bus interface module, which initiatesa request for the bus. When
the arbitration process alows the commander interface module access to the
bus, the transfer can proceed.

2 Initiate transfer. If this is a write, this will include data. The commander
places appropriateaddress(and data, if needed) and control informationon the
bus. The responder with that address will react by accepting the request
This does not imply that the responder module will be able to handle the
request, only that the request has been received.

3. Decide how to handle the request. This is the task of the responder bus inter-
face module. This does not mean that the subsystem attached to the bus will
necessarily accept (or provide) information immediately, but the bus interface
module of the responder must be capable of deciding how to respond to the
request. For example, if a memory is ready to accept information, it will be
capable of accepting the information, and the bus interface module will decide
that theinformationcan be accepted. On the other hand, if a memory is busy
with a previous request and unable to accept data, the bus interface module
will decide to reject the request.

4. Inform commander of the decision of the responder. This is the feedback
mechanism to atlow the handshake to occur, and indicates to the commander
that t he request has been handled. If the request was awrite, for example, the
system attached to the commander bus interface module can proceed with its
tasks. However, if the system attached to the responder interface module was

Chap. 6: input and Output Operations

unable to accept the data. this decision is relayed to the commander, and the
commander i nterface module can then initiate the request anew.

These four componentsare present in the asynchronous protocol, with its
associated arbitration mechanism, but are not as evident as in synchronous proto-
cols. The arbitration component can be handled in parallel, as in the UNI BUS pro-
tocol, or after a bus is available, as with most microprocessor bus systems, such
as the NS32032 systems. Component 2, initiating the transfer, is handled by the
bus master in an asynchronous protocol; the master module asserts the address,
waits the prescribed time. and aerts the slave modules by asserting the request
line. The third component, deciding how to handle the request, is an integral pan
of the slave module mechanism, sinceall requestsin an asynchronousprotocol are
handled immediately. If a memory reed is required, then the protocol awaits the
response from the memory before proceeding. Thus, it is difficult to separate the
act of responding from the decision to respond. However, in a synchronous pro-
tocol, these two elements are distinct. and are handled in a different manner. The
decision process is handled by the bus interface module. while the response to the
request is handled by the appropriate subsystem, such as a memory. The forth
component, the handshaking mechanism, is handled by the request and ack-
nowledge lines of the system.

These four events are shown in write and read sequences in Figure 611
The write sequence begins (periodn) by the processor interface module arbitrating
for use of the bus lines. When the arbitration process is settied in favor of the
processor, the sequence proceeds. and the processor interface module asserts the
data and address information onto the bus lines (period n+1). When the clock
occurs, the memory interface module accepts data and address. and determines
that the request was intended for the memory subsystem. During the next period
(n+2), the memory interface module ascertains the status of the memory and
determines that the data can be accepted. And finaly, during the acknowledge
period (n+3), the memory interface module sends an acknowledgement to the pro-
cessor interface module to indicate that the transaction was successfully com-
pleted. Since the commander of the processor bus interface module started the
series of eventsin period n. it will know that the response of the memory (accept
or reject) will be found in period n+3, so it will listen to the linesat thet timeto
find out if the write action was successful.

The read sequenceis also shown in Figure 6.11. The transaction is initiated
by the arbitration of the processor for the bus (period n). When the processor
interface module has obtained control of the bus lines, it will then assert the
address and request information on the bus (period n+1). Synchronouswith the
clock, the memory interface module accepts the request, and in the following
period (n+2) ascertains the status of the memory and decides to accept the
request. This decision is communicated to the processor interface module in the
last period of this sequence (n+3). The memory subsystem is then activated in
order to supply the required information. The time from period n to period m
reflects the response time of the memory. When the memory provides the infpr-
mation, the memory interface module initiates a bus transaction, first by arbitrat-
ing for the bus (period m), and then by asserting the data onto the bus (period
m+1). The processor interface module accepts the data synchronous with the
clock, ascertainsin the next period (m+2) that the data is in response to an earlier
request, and in the last period (m+3) sends an acknowledgementto the memory
interfacemodule.

Chap. 6: Input and Output Operations 291

Processor Memory

Bus Interface

Bus Interface
l Synchronous Bus

Write Sequence

Time Periods ———— | A | | 2 | s
Commander Initiate Response to Responder
Arbitration Request Commander Decision
Processor [\ \
requests P sor Memory iMenfary
bus sends data: interface sends ack
Memory decides to 0 Processor
inteltace accept data interface
gets data

Read Sequence

Time Periods-——-.l n l n+1 I n+2 I n+3 I I l m l me1 | m+2 I m+3|
TR T

/S 7\ /1 VN
/ \ \ Processor

Processor \ Memory Memory
requests interface requests interface
bus P Mgwory \ se;ds ack bus Mo sends ack
focassor interface to Processor ocessor {0 Memo
sernds '9'?" decides to interface sends data; 'i:r:terfaoer intertace.
r:g:‘neosry' handle read Fl’mssor decides to
interfacy request aC8 handle data
gets read accepts data
request

Figure 611 Synchronous Bus Mechanisms.
As indicated in Figure 6.11, each of the four components of the exchange

happensin separate cycles of the common clock, and can be pipelined. \We will
discuss pipdlining in more detail in Chapter 8, but the basic idea is that indepen-
dent events can occur in different pieces of hardware in the same period. With

Chap. 6: Input and Output Operations

multiple events occurring simultaneously, a speed advantage is obtained over the
same events occurring seridly. With a synchronous bus protocol, the interface
devicescan be designed in such a manner that each of the four functionsinvolves
a different set of hardware and a different set of bus lines, so that up to four
separate transactions can be in different stages of execution a any one time.
Thus, the speed advantage of synchronous bus transactionsstems not only from
the specific windowsin which information must be valid, but from the pipelining
and overlapping of transactions. Note that, if not enough transactions are avail-
able to keep the different portions of the bus busy during the variousclock cycles.
then the speed advantageof the pipelining is lost.

Example 6.6: Synchronous bus protocol: The synchronous backplaneinter-
connect (SBI), which is the communication mechanism for the VAX 11/780
compuiter, is a synchronousbus protocol. What are the methods used by the
protocol. and how fast can information be transferred on the bus?

The principle lines (but not all) involved in information transfer on the
SBI are shown in Figure 6.12(a). The sixteen arbitration lines {TR(15:0)f
dlow padld arbitration of up to 16 different modules during a clock
period. The information transfer lines inciude the 32 data/address lines
{B31:00} and lines for identifying the type of transaction that is occurring.
The response lines [CNF(1:0)] provide a data path for confirmation of previ-
ous transactions. The principle difference between the Bl and the protocol
discussed above is that the Bl time multiplexes the data/address lines so
thet a write will require more than one cycle. The s8I mechanism alows
for one or two words of data in a write transter. so tha up to X hytes of
information can be writen. Such a write cycle is shown in Figure 6.12(b).
To demonstratethe pipelined nature of the action, the transfer is shown in a
space-time manner. The lines involved in the transfers are divided into
three groups: arbitration lines, information lines, and acknowledge lines.
And the action of these three sets is descri bed for each of the cycles. The
DEC name for the commander and responder interface modules is the
NEXUS The first period (n) is used by the arbination lines for the NEXUS
associated with the processor to acquire control of the bus Once this has
occurred, the transfer can continue. The arbitration unit has the capability
of locking out other requests for the two additional cycles needed to com-
plete the transfer. The assertion of addressand write identification informa-
tion occurs in the second cycle (n+1). This information includes not only
the target address of the write, but also an identifying field to specify the
source of the information. The reason for this will become apparent with
the read transaction. At the end of this period the NEXUS associated with
the memory will receive the addressand the identification information. The
datafaddress lines are used in the next period (n+2) to send the first 4 bytes
of data; at this same time, the memory NEXUS is deciding how to handle
the request. At the end of the period, the acknowledgement decision has
been reached, and the first bytes of data are accepted into the NEXUS
Then, during the fina datacycle (n+3), the acknowledgment is retumed to
the originating NEXUS for the address and write identification information.
In the next two cycles additional acknowledgementinformation is returned
for the data cyclesof t he transfer.

The pipelined nature of possible transactionsis indicated to in Figure
6.12(b) by the shaded area that indicatesa possible second write cycle to be

Chap. 6 Input and Output Operations 293

294

Arbitration _tines
TR(15:0)
NEXUS Information Transfer Lines
for TAG(2:0), ID{4:0), M(3:0), B(31:0) NEf)é}J S
Trannzmif Response Lines Transmit
a p and
Receive CNF(1:0) Racaiva
Control tines
Interrupt Lines
REQ(7:4)
Time Period — [n | n+1 l n+2 | n+3 | n+4 I n+5 ,
Arbitration Acquire Hold Acauire o {
Wc“% no ,gmhg Iggsld bzs angg;': : (Write cycle 2)
Send
: Send Send
'n-fr?g:saftéorn Comand four bytes|lour bytes
Address data data

Confirmation

Confirm .
Address, C%nl'lrm
Command 2

Confirm

data

ﬂmoPerbd——-l n]n+1 | n+2l 3 |

Information
Transter

' m Im+1lm+2lm+3|m+4|

Confirmation

Figure 6.12. Synchronous Badkplane Interconnedt Protocal: (a) Contral Lines Involved in
Bl Information Trande: (b) Write Transadtion. 8 Bytes (c) Read Transaction, 8 Bytes.

initiated by a second NEXUS. Note that the second cycle begins before the
first cycle ends. This protocol allows meaningful data or address informa-

tion to be placed on the data bus during each cycle.
The read transfer operates with a similar mechanism, except that the

request and the responseare separated by the response time of the memory.

Chop. 6: input and Output Operations

6A.

This is shown in Figure 6.12(c). Here the NEXUS associated with the pro-
cessor acquirescontrol of the bus (period n), sends out a read request con-
sisting of an address, a logical identifier, and a transfer type identification
that informsthe memory to supply 8 bytes. The processor receives the ack-
nowledgement of the request in period n+3. Some time later, when the
memory has the information for the processor, the NEXUS associated with
the memory gains control of the bus (period m), and sendsthe data in two
4-byte transfers(period m+1, m+2). The destinationof this information is
carried by the identification lines, which will have the same logical identifier
that was passed with the read request. The NEXUS associated with the pro-
cessor sends its acknowledgement to the memory in periods m+3 and mi+4.

Additional read and write transactionsare shown in the shaded areas
of Figure 6.12(c) to demonstrate the pipelining and parallel events possible
with the protocol.

The clock cycle time for the SBI is 200 nsec. Thus, with the above
protocol it is possible to send 8 bytes every 600 nsec. This gives an effec-
tive datarate of 13.3 MBytes/sec.

In this section we have consdered some of the principles involved in
transferring information with synchronous bus communication protocols. These
mechanisms will, in general, lead to a higher data rate than their asynchronous
counterpartsfor two basic reasons. First, the presence of a common clock limits
the physical size of the system and synchronizesail requestsfor action. This syn-
chronization establishesa time a which all action must take place. Second. the
separation of the components into independent pieces of hardware. and into
independent bus lines, permits pipelining of the various functions. This alows
concurrent use of the available resources. The net result is that data can be
transferred at higher rates than achievablewith other methods.

Data Movement: Programmed i/© and Direct Memory Access

We have discussed some of the basic mechanismsinvolved in doing transfers of
data over bus systems. Regardless of the exact protocol used, an arbitration
mechanism is utilized to identify the module which controls the bus. This module
then initiatesa transfer, and the data is moved from one module to another. This
mechanism is most often utilized to exchangeinformation between a memory and
a processor module. However, the same mechanism is used to transfer informa-
tion and commandsto and from /O devices. In this section we want to explore
some of the methods that can be used to control 1/0 devices and to transfer infor-
mation to and from a computer system. For computer systems that include
separate /O instructions, generally an ¥0 bus is used for the communication. In
some systems with O ingtructions, the system bus is used for memory and /O
transfers, but /O transactions use a slightly different set of control lines to per-
form the transfers. However, one prevalent practiceis to Use the same address
space for both memory and /0 devices. This method calls for the I/0 devices to
be assigned locations in the memory space, and then, when the device is to e
activated and controlled, the processor does so by writing and reading the
appropriate locations. This is caled “memory mapped 1/0,” and is used exten-
sively in minicomputer and micmprocessor systems. In fact. the inclusion of 1O
instructions in the processor instruction set does not preclude the use of memory

Chap. 6: Input and Output Operations 295

mapped [0, and t he manner used for connecting /0 devicesis left up to the sys.
tem designer.

There are three basic mechanisms for the interaction between the processor
and the I/O device. The processor responsibilities of each mechanism, the system
resources required, and the complexity of the O interface module required by
each method are all different. A Mock diagram showing the relationship between
the processor and the 10 device is shown in Figure 613 The 1O interface
module interacts with the system bus to provide both control signals and data to
an 1O device controller. Most /O device controllersare designed in such a way
that they will control a singletype of device, such as a disk Or tape unit. How-
ever. the device controllersare also designedin such a way that multiple copies of
1/0 devices can be controlled by a single 10 device controller. If another t ype of
I/0 device is to be included in the system, then a different /0 device controller is
needed, with its associated VO interface module.

Regardless of transfer mechanism utilized, the processor must have the abil-
ity to direct action in the /O device with instructions; this mechanism we will
refer to as' programmed UQ!" It is possible to control both the action and the data
movement of a device with programmed UO, as we will see in an example. It is
also possible to initiate the action with programmed 1/0, and then allow the inter-
face moduleto interrupt the processor when dataisavailable. This interrupt capa-
bility allows the processor to proceed with other work while the data is being
obtained, and then to interact with the 1/0 device only when data is available.
Finally, the highest speed is obtained when the interface module has the capability
of exchanging data directly with the memory. This is referred to as direct
memory access(DMA), and is limited in speed by the transfer rate of the bus. For

Additional devicescan comnect —» |1 Dracks
to a single controller \ = Type A
- Vo
Device
AR Type A
Control
Genra i
Processing interface 1 Deyi Vo
Unit Memory Module || Controller Device
Number 1 Type A ype
. 1 — |
. L Data
Computer System Bus]
o 1o
Interface Device o
Number 2|} T lor Type
Interface module provides — ype B

interaction between system bus

and device controlier

Figure 613 InterfaceSystem Block Diagram.

Chap. @ Input and Output Operatiors

DMA transactions, programmed /O instructions are used to set up a starting
address in the system memory and the length of the transfer; and then another
programmed /O instruction initiates the action. The system is then free. to per-
form other tasks, and the DMA interface module interacts directly with system
memory to perform the transfer.

An 1O device is controlled by writing (and reading) information to (and
from) specific locations. This method is independentof the type of bus protocol
used. but the examplesin this chapter will all be done with the asynchronous pro-
tocol, as that is the most widely used mechanism at this time. Interface module
and 1/0 devices can be controlled by assigning a specific action to each of the
addresses used by an /O device, or by assigning an action to specific bits or bit
patterns a a single address. In either case. the processor sends the command to
the interface module by writing to the proper address with the necessary hit pat-
tern. When the interface module receives a write request. it accepts the bit pattern
and performs the requested work. When the interface module receives a read
request, it supplies the appropriateinformation to the bus. In this fashion. infor-
mation can be moved to and from the 1/O device.

One of the most frequent inquiries made by a processor concems the status
of the interface module and UO device, whether it is busy or not, and whether it
has dataavailable. Thus, reading a status register in the interface module must be
done quickly and easily. The status register usually contains information about
the device it is controlling. For example, a tape recorder interface module might
have hits in its status word that indicate if the deviceis on line. if it is busy. if the
interrupt 1 cnabled. and so on. The processor 1s then capable of determining the
status of the device by reading the status register.

The simplest interface mechanism results by allowing the processor to con-
trol all aspectsof the transfer. This method consumes all of the time of the pro-
cessor, but can be used if the need arises. Since the machine is entirely utilized
with the /0 transfer, it is not capable of being used for other tasks during this
time, and this is generally not an acceptable cost. Nevertheless, the interface
module between the computer system and the WO controller can be very smple. as
shown by the following example.

Example6.7: Interface module design: Design an interface module that will
connect a tgpe recorder to a 16-bit asynchronous bus for a read only opera-
tion using memory mapped 1O techniques. This mechanism is to be con-
trolled by writing command patterns to address FFFD80y¢, reading status a
addressFFFD82,4, and by reading the data at addressFFFD84ys. VAL is the
maximum data rate achievable by this mechanism?

We will delay severd of the details of the tape recorder side of the
interface module, and concentrate on the interaction with the bus Assum-
ing that the interface method to be used is the four event protocol described
in Section 6.1, the lines of interest are the address and data lines, a read
line. a request line, and an acknowledgeline. One design for this interface
module is shown in Figure6.14, which we will examine by function.

The first function is the address decode and command line interface.
The most significant lines of the address are tested with a gating network to
look for the proper address(FFFD80,s — FFFD846). This sane function can
also be accomplished by using an address decoder chip. such as the 74677.
which looks for a specified bit pattern. However, if the addressof the dev-
ice is not known & &sign time, then one mechanism isto use comparators

Chap. 6: input and Output Operations 297

Gates to detect
assigned address

REG-H

&

Hrmv

DATA_IN-L
STATUS-L
COMMAND-L

3
(

1
Decoder determines

function from LSBs
of address

ADDRESS (23:0)-H

-

RD_DATA-L
RD STTUS-L
LD _CHD-L

HI
ACK-H

Tri state
driver

Figure 6.14(a). Tape Recorder Interface Module(Controt).

configured with address specifying switches. The least Significant lines are
directed to a 3-line-to-8-line decoder, which asserts a line for eech of the
gppropriate addresses. Note thet the least significant line (ADDR(0)-H) is
not usad; we assume that the system is always going to accessthis informa
tion in 16-bit words, properly digned.

If the address metches, then when the quest line is asserted (REQ-H),
the required action is immediately performed, and the acknowledge line
assarted (ACK-H). No dday other than the gate delays of the circuitry is
insarted into the system since the timing does not require it: information
from the madter is accepted with edge triggered devices, and the reaction
timeof the master will account for any hald time needed. Also, information
sent to the master is asserted at the sane timeas the acknowledgeline, and

"the master is responsiblef a any delays necessary to account for skew on
the datalines Thus, command information (and data. if it is required by the
speci fi ed interaction) is accept ed without delay. Likewise. as soon as aread
command is received, the requested information is provided. This register
interaction will result in a faster read/write tiMe than normal memory,
although it isinthe sane addressgpace

Chap.6: Input and Output Operations

TAPE_DATA(1S:0)-H

DATA_IN-L RD_DATA-L —
= This is for
' data coming
l from the tape
r controller
a
ax 7 .
2 Edge triggered registers
v 2 with tri-state outputs
1974 8 -——
b |LACTFLAG-H ¢
The status lines
OTA_RDY-H from the tape
>%“l “p- machine
RD_DATA-L a STTUS(15:0) -H
STATUS-L l:: l; RD_STTUS-L
3 -
ax g Edge triggered registers
s with tri-state outputs
2 -~
1574 2
- — ——
EE)?A?A:ND—L > }] D’Cﬁ LT
- 1
CPU_DATA(15:0) ~H . Lines which
- ° control the
Edge tri ed registers 2713 & function of
ge trigger
uith noraal outputs | T ——f UENTES
I' CHMD(15:0)-H

Figure 6.14(b). Tape Recorde Interface Module (Data Path).

To demonstrate t he programmed 10 mechanism, consider t he transac-
tions required to cause the recorder to space forward a block, then read the,
next block of 512 words Assuming that there is a Smple assembly
language to wark with, the following code section will perform the desired

work:
1 MOV #<FSF>, @FFFD80 FSF isfile space forward pattern.
2 one: TESTI #<BUSY>, @FFFD82 BUSY iSpattern tO test busy condition
3 INZ one of interface module. Loop to"one” till done:
4 MOV #<512>, Rl Set up the count.
s MOV #<start addr>, R2 Set up the address.
6 MOV #<DAV>, R3 Set UD test pattern for dam available.
7 . MOV #<FFFD82>, R4 Set up address Of status regiger.
8 MOV #<FFFD34>, RS Set Up address Of dataregister.
9 MOV #<read cmnd>, @FFFD80 Start read action.
10 two: TESTR3, *R4 (800) Is there dat a?.

Chap. 6: Input and Output Operations 299

11 12 two (450) If not, gO back to "'two."

12 MOV *RS,*R2+ (1150 If so. move vhere R2 points.
13 DECRI (550 and bump R2; done 512 words?
14 INZ two (600) If not. go back to"'two."

(3550)

The first ingtruction writes out the pattem to indicate to the interfacemodule
that the tape recorder should move forward to the next file mark. The next
two ingtructions merdly wait until that is accomplished. Instructions 4
through 8 set up the general purpose registers to allow faster processing in
the transfer section. Ingtruction number 9 actually starts the reed action of
the recorder. Instruction 10 checksto seeif the data isavailable. It issimi-
lar in function to instruction 2, which checks to see if the recorder is busy.
However, by using vaues in registers, rather than values in the instruction
stream, the time required for the instruction is greatly reduced. In Chapter 4
we identified different instruction times for instruction types, based on the
amount of work required by the instruction. Using the times identified
there. ingtruction two requires 1,750 nsec for completion, while instruction
10 can be done in 00 nsec. Instruction | | is to loop until data is available,
when the action moves to ingtruction {2, which moves the data from the
interfacemodule to the designated spot in memory. And with the autoincre-
ment feature of the destination address, the system is ready for the next
iteration. Instruction 13 decrements the counter. and instruction 4 loops if
the count has not reached zero. The highest data rate will occur when the
instructions 10 and || are executed hut once cach iteration. When this
occurs. 1he Toop takes 3.550 nsec. Two bytes each 3550 nsec results in a
data rate of 563 Kbytessec. This rate cannot be sustained over time. since
it does not take into account the time required to set up the transaction.

The above example indicates what can be accomplished by a machine dedi-
cated to performing asingle transfer. However, if the device being controlled is a
modem or line printer, then the data rate is much lower than that attainable by
programmed [/0. Mogt of the time the machine would be executing the wait loop,
waiting for the data movement to occur. Therefore, system designers have often
designed the machines in such a way that the interface module can interrupt the
action of the computer when data movement is necessary. The positive effect of
thisis that the machinetime that would be used by looping can be effectively util-
ized for other functions. The negative effect of this mechanism is that the transfer
rate will be lower, since more work is needed for each transfer.

Example 6.8: Interface design with interrupe: Consider the system of Exam-
ple 6.7, but assume that the interface module is also capable of issuing an
interrupt when data is available. Wha is the maximum data rate for the
system?

We will make the assumption that an interrupt action causes the
current PC and status register to be pushed onto the system stack, and also
causes the interrupt service routineto be entered with the vector mechanism
discussed in Chapter 4. This mechanism will require about 1100 nsec in
our machine. Weinclude here two sections of code. one of which isused to
set up the action, and one of which is actually executed once for each word
of datatransferred.

Chap. 6: Input and Output Operations

1 SHUup. MOV #<start addr>, @ADDR Sat upt he initia address

2 MOV #<512>, @COUNT St up the count vdue:
3 MOV #<read cmnd>, @FFFD80 Start the read action.
10 srvee: MOV @FFFD$4, *@ADDR+ (3650) Movet he data
1 DEC @CQUNT (1800) Check the count.
12 JZ more (450) If done, do other action.
13 RTI (850) If nat, return from interrupt.
14 mam

20 ADDR: DATA O
21 COUNT: DATAO

The firg three instructionsare used to initializethe starting address and the
word count, and to start the actual reed action. We are neglecting here the
commands necessary to position the tape a the right spot. since additional
code to discern between a movement command and a data command would
further dow the action of the system. For the data movement action of
interest here, the ingtructions of note are 10 through 13. These perform
essentialy the same action as the code of Example 6.7; instruction 10
movesthe data. instruction 11 decrementsthe count, and instruction 12 gets
out of the loop if the count has reached zero. The count will reach zero
when the appropriate number of words have been transferred. and a that
point the transfer is complete. If the transfer 1s not complete (COUNT has
not reached zero). then mstruction 3 returns the program to the execution
in progress when the interrupt occurred.

The differencein ingtruction execution times resultsfrom the fact that
now the address information is contained in the instruction stream, and
many more references to memory are needed to obtain and manipulatet he
data. One benefit of this mechanism is that no registers need to be saved
upon entering the interrupt service routine. However, the overall time will
be greatly increased. with a time for interrupt and interrupt service routine
of 7,850 nsec. Thisresultsin a maximum data rate of 254 Kbytes/sec.

As can be seen from the example, t he deta rate for interrupt driven transfers
is much less than that achievable strictty with programmed ¥O. However, for sys-
tems where the data rate is much lower, the interrupt scheme will alow the sys-
tem to be utilized in other action while the transfer is in progress. In both cases.
the action of the interface module and the movement of the dita were controlled
with programmed /O instructions.

To increase the data rate of the system requires a more complex interface
mechanism, one in which some of the responsibilitiesof the transfer are moved
from the processor to the interfacemodule. The most frequent and time consum-
ing activity is the transfer of data from the deviceto the memory, and this is pre-
cisdy the activity committed to hardware. This requires a more complicated
interface system, and a simplified diagram of such an interface module is shown
in Figure 615. The resultisadirect memory accessinterface module, which will
interact directly with memory in the transfer of the data.

Ascan be seen from Figurs 6.15, an interface module with DMA capability
adso contains the basic elements of the programmed 1O interface system: the
status register reports the status of the interface module and its associated [0

Chap. 6: Input and Output Operations 30

Processor/Controller

| Tape Controller

I Status/Command Data
¥ =

Interface

Control Section

Address
Decoder

(",qomimand Status l Data }

| Word Count Addr_essr

Address Lines

Contral Lines

Data Lines

Figure G15 Tape Recorder [nterface Module with DMA,

device, and the command register controls the action of the unit. However, two
other registers have been added: the word count register (w¢) and the address
register (AR). These registerswill be filled(and read, if required) by programmed
YO ingtructions. The control portion o the DMA interface module must be nore
complex than the previous interface modules to not only transfer control and
status information, but also to control the processof automaticdata movement. In
general this control portion will be a sequential system designed using the con-
ceptsand ideas presented in Chapter 5.

The control of the action of the /O devicg{tape movement. heed positioning
for adisk, ete.) proceedsas terore, with programmed KQ instructionsdirecting the
appropriate movement, and the device interrupting when the specified action has
been completed. However, when data movement is called for, then the code con-
trollingt he unit (commonly calledt he “I/0 driver routine™) will, with programmed
10 instructions, fill the WC register withthe number of words to transfer, and t he
AR with the darting addressin nenory where this transfer is to take place. The
transfer of informationis then initiated with programmed /0 instructions. When

Chap.6 input and Output Operations

the data becomes available, the interface module requests control of the bus, per-
forms the necessary transfer, and relinquishes control of the bus The addressfor
the transfer is provided by the DMA interface module. After the transaction is
complete, the address is changed to point to location to be used by the next
transfer. In addition, the word count is decremented to keep track of the number
of transfers that have occurred. Thus, the hardware handles the information
transfer after data startsto Row. Using this technique, the data can be transferred
at a rate limited only by the bus speed. This allows high speed devices, such as
disk units, to exchange information at the data ratesof the disk. A disk using an
SIVD protocol can transfer information in excessof 3 Mbytes/sec.

Example6.9: Interface design with DMA: Modify the tgpe recorder interface
module developed in Example 6.8 to include DMA capability. The word
count register is accessed as location FFFD86,,, and the address register is
accessed as location FFFD88, for the least significant 16 bits, and location
FFFD8A,,, for the most significant 8 hits.

We will delay the design of the control system until the following sec-
tion, but the other elements are shown in Figure 6.15. The use of the
decoder is expanded to include the additional addresses required by the
word count and address registers. Note that these registersare readable as
well as writable. This does not improve the functiondity of the unit. but
will provide valuable help for both checkout and test.

The need for action on the pan of the sequential controller is indicated
by a hardware tlag in the control secuon of the interlacemodule. This s set
when the command register 1s tilled by programmedi/0. One of the respon-
sibilitiesof the controller is then to reset this Reg when the action has been
initiated. When the action requires tape movement, such as file space for-
ward, then the interface module requests the movement from the tape con-
troller and waits for the completion of the action. When data movement is
required, the specified tape action is requested, and when a data transfer is
necessary, the appropriate buscycleis initiated.

The transferrde of this mechanismis limited by the bus speed of the
system. For a bus system with a transaction time of 250 nsec, the max-
imum date rate would be 8 Mbytes/sec, This rate is somewhat inflated,
since no allowanceis made for other users on the bus or for the cost of bus
arbitration.

This section has dealt with the transfer of information between a processor
and an /O device. There is a tradeoff in complexity of hardware and processor
time to transfer information. If the complexity of the interface module is kept
simple, then the responsibility of the processor to control the /O device and the
data movement increases. For transfers conducted purely with programmed /0
instructions, the processor must either continuously monitor the appropriatestatus
lines, or it must interrogate them periodically (polling) to ascertainif any action is
necessary. In either case, a large portion of the processor time is devoted to con-
ducting the transfer.

If the concept of interrupts is utilized, then the processor is able to ignore
the YO device until action in needed, at which point the interface module will
cause an interrupt, requesting interaction with the processor. The benefit of the
useof interrupts is that the processor is free to do other work whilethe 1O device
does rt need supervision. The cost of this policy isthe decrease in the speed of

Chop. 6: Input and Output Operations 303

6.5.

possible transfers. This policy is especially beneficia for action that does not
involve data transfers, such as tape movement or positioning of disk heads.

The highest speed is achieved by direct interaction between the interface
module and the memory, with the use of DMA. This method requires more com-
plex hardware, but is capable of very high speed transfers. DMA interface
modules combine the various techniques to achieve the high data rates. Pro-
grammed [/O instructions are used to communicate with the various registers that
control the action of the /0 device. Interrupt techniques inform the processor that
a requested action has been completed. The controller of the interface module
interactsdirectly with the bus to transfer the data with minimal overhead, needing
only the time required for successful bus cycles.

An Example of a Device InterfaceModule

Many of the concepts discussed in the preceding sections are more easily visual-
ized when a specific example is utilized. For that reason. we will use the tape
recorder mechanism that was the object of the previous examples, and we will
design a simple DMA interface module capableof a limited amount of interaction.
The interface module will control the behavior of tape drives as directed by the
programmed O instructions issued by the CPU. Thus, the interface module
should combineall of the techniques discussed: respond to instructions. assert sig-
nals going to the tape controller,cause interrupts. and control DMA transfers.

The task facing a designer s to ascertain the requirements of the system and
build a device that will satisfy those requirements. In this case, we need informa
tion concerning three different facets of the design. Two of these are indicated in
Figure 6.15, which shows the relationshipof the interfaceand the tape controller.
One piece of information is the bus specification, which identifies the elecmcal
and timing requirements of interaction with a bus module. The other device
specific information is the set of control and data signals used by the tape
recorder, To perform the needed t ape movement, read, and write operations, the
device must assert these lines in the manner defined by a controller specification.
The final pieceof information needed is a definition of the commandsto be issued
and the status to be interrogated by the CPU. Thus, before the design process can
begin, information about the electrical and behavioral characteristicsof the inter-
face module must be established.

The bus usad for this design is the UNIBUS, but the same techniqueswould
be applicable on a Multibus, Q-bus, VME bus, and so on. Each bus has its own
characteristics, and these characteristics must be considered in the process of
doing adesign. The UNIBUS is relatively simple, yet it includesthe salient points
addressed by the previous sections. Also, becauseit is a 16-hit bus the transfer
techniquesare not overshadowed by an enormous number of wires. To match the
electrical characteristics we will use special gates, and to satisfy the timing
characteristics we will u® a sequential system designed with a state machine
approach. Other bus systems, such as the VME bus, will use more standard gates
for their interaction, but the techniques will be the same.

The tape controller that is the object of this design is capable of controlling
upto four 9track t ape transports. The data path to the controller is separatefrom
the data path coming from the controller, but both pathsare 8 bits wide. Parity is
usd to create the ninth track for the tape, but the controller itself takes care of
parity operations. In addition to the data lines, there are command signals and

Chap. 6: Input and Output Operations

status indicators associated with the tape controller. The command lines are indi-
cate in Table 6.1. Assarting these lines in the proper fashion will result in the
desired control over the tape drive and the date movement The designer must
create the interface module in such a way that the signalsare asserted properly.
The third control is labeled SETX-L, and it used to synchronize the other com-
mands listed. For example, when a write file mark command is required, the
WRITEFM.L lineis assarted, and then the SETX pulse causest he tgpe controller to
accept the command and begin the specified work.

The control signalsof Table 61 are usad to activate the controller and per-
form vork, but in addition to that the CPU often needs to know the status of the
tape system. For this reason, a number of status linesare provided, as shown in
Table 62. These signals are received and delivered to the CRU when the
appropriate programmed /O instruction is given.

The UNIBUS specificationis used to identify the required signals on the bus
side of the interface module. The controller specification provides the signals
given in Table 6.1 and Table 6.2. which identify the signals of the tape drive side
of the interface module. With this information a preliminary data path block
diagram can be formed, and this is given in Figure 6.16.

The initial registersare identica in function to those identified in previous
sections in this chapter. The command register is used to receive commandsfrom

Tabk 61 Contrd Lines to Tgpe Controller.

Signal Function
INIT-L Pulse to intishize transport
SET_TRANG:0)-L Levd to sdlect activetransport
SETX-L Pulse to synchronizeaction requests
WRITE-L Levd to identify function type
READL Levd to identify functiontype
INPUTX-L Commeand for input data
OUTPUTX-L Command for output data
FILESRCHF-L Command for file search forward
FILESRCHR-L Command for file search reverse
SYNCFWD-L Command for synchronousforward action
SYNCRVS-L Command for synchronousreverse action
WRITEFM-L Commend for writ e file mark
REWIND-L Rewi nd command pulse

Table 63. SausSignds Avalable from Controller.

Signal Function
TAPE-READY-L Tgpe transport and controller ready
P_ERROR-L Parity error
EOF-L End d filemark detected
BOTL Tape located a beginning of tape mark
EOT-L Tape located @ end o tape mark
FROTECTL Tape transport senses no write ring
RWDING-L Tape isminding
SELO-L Trangport O sHected
SELI-L Trangport 1 sHected
SEL2-L Transport 2 selected
WL Trangport 3 sdected

Chap.6: input and Output Cperations 305

CMD_CLK

RD_STATUS

WC_LD_CLK
WC_DEC_CLK

MSB_AR_LD _CLK

LSB_AR_LD_CLK
AR_INC_CLK

MSB FROM CLK
MSB_TO_ENBL
BUS-DATA-CLK
DATA-BUS-ENBL

LSB_TO_ENBL
LSB_FROM_CLK

] AddrezsndDecode Controi

Control_Logic Signais
Command Register | | state Machine L, Control
i 273 Controller Signals
Status Register Receiversand | Status
- ‘374) Latches ¥ Sigrats

Word Count
Register

L_q '869

8 MSB
Address Register
‘869

16 LSB

Address Register
'869

MSB Data Register
‘646

Drivers —3;u ?2&% lo

Controller

Receivers ‘78‘— ngt% from

L8B Data Register Controller
'646
CPU
System
Bus
(16 bits)

Figure6.16. Data Path Block Diagram for Tape Recorder interface Module.

the system: these will be acted upon by the control portion of the interface
module. The status register allows the CPU t 0 investigate the current status of the
system and the selected transport. The word count and address registers operate
as described in Section 64. The registers that have not been mentioned yet are
the registers used t 0 hold the data transferred to ar from the tape transpert. The
output registers acoept a word from the bus, and then, under control of the inter-
face module, the bytes are alternately sent to the transport. The transport itself
adds parity for the ninth bit. Thepath from the transport to the bus is the reverse

Chap. 6. Input and Output Operations

of that described above; the bytesare accepted one at a time, thenthe 16-hit word
is sent to the bus. If it is desirable to be able to transfer an odd number of bytes,
then the interface module becomescorrespondingly more complex.

Along with the initial data path, we also need a behavioral descriptionof the
interface module. We know that we want commands to cause tape movement, as
well as commands for reading and writing. We will design a system capable of
selecting one of the transports, and on the selected transport performing one of the
following commands:

o Read forward (R): Tape motion isinitiated by the tape controller to read dita
Before thiscommand is issued it isimperativethat the interface module be ini-
tialized with a word count indicating the number of words to transfer. and an
address where the data is to be located. Data delivered from the tape controller
will be placed into memory by the interface module. After the block of data
has been read from the tape. the number of words read is compared to the
number of words expected: if they differ, an error bit is set in the status word.

* Write forward (W): Tape motion is initisted by the controller, with controls
configured for a write. Again, it is imperative that the word count and address
registershave been properly initialized for the required transfer. DMA transfers
are performed by the interface module, and the data delivered to the controller.
When the word count reaches zero. the action is stopped.

Write file mark (wFM): A tile mark is written onto the tape by the controller.

File search forward (#SF): The word count register must be ftilled with a
number indicating how many tile marks should be skipped. The interface
module issues the appropnate number of tile search commands, haiting when
the word count has been decremented to zero.

e File search reverse (FSR): This command positions the tape by searching in
the reverse direction. It is assumed that this request will be given (with an
appropriate word count) to position the tape after the file mark in question.
That is, if the tapeis positioned in the middleof afile, an FSR command with a
word count of one will back up one file mark, then read over the file mark.
The net result is to position the unit at the beginning of the fik. An FSR com-
mand with a word count of two will position thetape a the beginning of the
file before the current position of thetape.

Rewind (REW): A rewind pulse is sent to the tgpe controller. The net result is
a rewind action on the selected drive.

Enable interrupt (INTE): The intermpt capability of the interface module is
enabled. This will be indicated as a bit in the status register.

Disable interrupt (INTD): The interrupt capability of the interface module is
disabled.

Each command involving tape movement will cause an interrupt (if the intermpt
facility is enabled) when the command has been completed. In addition. the sys-
tem should provide various status information about the condition and
configurationof the selected tape transport.

The command required of the interface module will be supplied over the
bus and loaded into the command register. The commands are nat ASCII words,
but rather consist of bit patterns defined in advanceto identify t he desired action.
For this project we define the following bit pattemns as instructions:

Chap. 6: Input and Output Operations 307

Action Bit Pattern

Reed 000100
Write 001000
Write file nark 001100
File search forward 010000
File seach reverse 010100
Rewind 011000
Enable interrupt facility 100101
Disable interrupt facility 100100

Select transport (xx = 0,1,2,3) 1000xx

The bit patterns identify the six LSBs of the word; the other bits are not tested in
the system. Note that a pattern of all zeros is not a legal instruction. Also, the
actions that do not require tape movement (transport select, intermpt enable, inter-
rupt disable) al have a | in the sixth position. This will smplify some of the
hardware of the system. The hit patterns used to specify the action of machine
interface modules should have some correlation between the defined patterns and
the hardware requirementsof the interface modules. This is just one of the many
examples where communication between users of computers (programmers, sys-
tems personnel. etc.) and buildersof computers should communicate requirements
and preferences.

The above commands are given to the interface module by writing the
appropriate bit pattern to the command register. The status of the tape drive is
obtained by reading the status register. This information is obtained from the sig-
nd lines identified in Table 6.2. Other signals are available, but this set will be
sufficient to demonstrate the elements of our design. From those signals, as well
as from signals generated by the control of the interface module, we will
configure a status register as follows:

~151413121110098 7 6 5 4 3 2 1 0
|BSY|SMB|ERR| | |INTE|RDW|WRP| PE |BOT|EOT|EOF| Trans

The bits are defined as follows:

e BSY: Busy hit, derived directly form the TAPE-READY signal from the tape
controller.

e MB: State machine busy, indicates when the controller of the interface
moduleis not in the idle state.

e ERR: Record length error, which will occur when the number of words reed
fmm a block on the tape does not agree with the expected number.

e INTE: Interrupt enable bit, which isa { whenthe interrupt facility of the inter-
face module has been enabled.

e RDW: Rewinding, set when the selected transport is in the process of rewind-
ing.

e WRP: Write pmtect, which isa 1 when the selected transport docs not detect
the presense of awrite ring on t he tape.

e PE: Paity error, which is set when t he Last operation detected a parity error.

e BOT: Beginning of tape, indicates that the tgpeis located & the beginning of
tape marker.

Chap. 6: Input and Output Operations

e BEOT: End o tape, indicatesthat the tape is located at the end of tape marker.

e Trans These 4 hits indicate which of t he four transports will be controlled by
the interfacemodule.

Reading the status cauises these vaues to be loaded into a register, S0 that if they
should change while rhe instruction is being executed that change will not cause
problems with the ingtruction itsdf.

Thelig of commeands for the tape system does not have a direct correspon-
dence with the signa lines given for the tgpe controller. Thus, the designer must
identify the desired action and assert the control lines accordingly. For the con-
troller usad here, the functions identified above are obtained by asserting the lines
according to the following table:

Write File File
File Search Search
Read Write Mark Forward Reverse Rewind

SETX-L X X X X X
WR TEL X X
READ L X X X
FILESRCHF-L X
FILESRCHR-L X
SYNCFWD L X X X X
SYNCRVS-L X
WRITEFM-L X
REWIND-L X

Note thet the SETX lineis to be asserted for all motion commands, except rewind.
which requiresa pulse on only the REWIND line. The INPUTX and OUTPUTX
sgnds are pulses that activate the data transfers; thet is, when the tape controller
needs (or has) data for transfer, it will request this informaion. The interface
module must respond by providing (or accepting) data on the byte-wide set of
data lines to the tape driveand asserting OUTPUTX (or INPUTX). All of the other
linescan be levels, and our design will treat them as such.

The interface module must be electrically compatible with both the bus with
which it is working and with the tape controller. The UN BUS requires specific
st of interface chips that provide a minimal load on the bus, sample gates used
by the interface module are shown in Figure 6.17(a). The assertion level on the
bus is low, and these chips convert from the high assartion levels used in the
interface module to the low assertion levels used on the bus Other bus systems
mey use standard tri-state devices, or have other requirements, but the design pro-
cess mug adhere to the specificationdf the bus. We will not indude al of the
individud gates in the drawings shown in this section, but we will assume that
rhese gates are used to match the electrical requirements needed by the signdls.
The drawingsin thissection will includet he major blocksand some o the control
signals involved. A more complete set of schematics can be found in
Appendix B.

The tape controller also has a specification for driving and receiving the
control, Satus and datalines. Thisspecifically callsfor open collector driversfor
the signd lines going to the controller. and resistor networks (220Q to +5, 33002
to ground) on the signas arriving from the controller. Theeffectiveimpedance of
this combination (22002 in parailel with 330€2) is about 130L, which is a

Chap. 6: Input and Output Operations 309

o

DEC B840 e 1 !

MEYN L BMSYN-H }Address and : I oma JGMSYN-H MSYN L
unction decode| | control
] | i circuitry

logic

on UNIBUS

DEC 888l

[= [}

High true buffered

logic: name Signal generated

preceeded by ‘B’ for bus: name
preceeded by ‘6!

ngnnl from
tape
controller:
asserted
level 1s
law

al
T

(a
Source of
data and
f
interiare control Dpo
signals for [
tape controller ?
Buffered Lor asserted I
Is for signals to
|n ere}ace tape controller:
open collector
(b) drive circults

Figure 6.17. Interface Gates Used for Bus, Controller.

reasonable match for many sgnd transmission mechanisms. For this reason. it
has been usad for many yearsas the method for terminating signdls, as shown in
Figure6.17(b).

The diagramsfor the interface moduleare included as Figure 6.18. and we
will describe the various sections and their responsibilities. The address decode
and programmed /O control signals arefound in Figure 6.18(a). Gates have been
provided to minimize the load presented to the address bus, and the buffered lines
are labeled BADDR. These lines are used to compare the address againgt an
addressed set up by the us. This mechanism alows the address to be deter-
mined a ingalation time rather then design time The UNIBUS uses only 18
address lines, 0 the other lines indicated in the figure are supcrfluous; however,
other bus systems use up to 32 hits in the address. The least significant address
linesand buffered control lines from the bus are usad to create signals usd in the
interface module. Thesesignalsallow t he sequentiality of the bus protocol to pro-
vide the timing necessary to read and write registers under programmed (/0 con-
trol. The request linefor the UNIBUS iscaled MSYN, and its buffered verson is
shown in Figure6.18(a). The acknowledgeisidentifiedas ssYN, and it is shown
before being sent to the bus with the required bus matching gates.

Also induded in Figure 6.18(a) is the conmand regiger. The action of
filling the command register also sets a flag (ACTFEG), which will betested by the
state machine that directs the interaction with t he tape. controller. The contents of

"the command register and the activity flag are inputs to a second register, which is

labded the buffered command register. This register, which is clocked whenever
the system is in an idle state, has two purposes The firgt is to synchronizethe

Chop. 6: Input and Output Operations

i Deoode system to generate
Dlzrs::::hes work signals from bus
. address lines and control
Junpers 10 signals
set address gn
e e BMSYN-H
Comparator
o - ADR_MATCHL
p—q
BADDR(23:4)-H
-
BC1-H
UNIBUS uses only 18 LD_MSA-L
lines: other buses BCO-H = LD_LSA-L
my use nwe P WL
D_.._.__é——
BADDR(3:1)-H LD_CMD-L
s
MSA BUS-L
LSA_BUS-L
WC_BUS-L
STUS_BUS-L GSSYN-H

[D_CMO-L

SFSF-L Decode iogic
- to generate
SM_IDLE-H proper signal
combinations Opn collector
for tape drivers fw
Command register controller control signals
filled by
amved [/0
BDATA(7:0)-H T ax Decode Drivers -
] T signals
CMD-L Buffered command
0. P> ax rqrster: used to NP?]
by state machine controller
CMD_FLG-H
HI
s ACTFG-H| —-—n
o Activity
flag

ax =

an
CLR_CMD_FLG-L Ny

Figure 6.18(a). Programmed /0 Control and Command Regigters

filling of the command regiger with the dock of the gate machine system.
Without this mechaniam the system would fail when t he contentsof t he command
regisger changad during the senstive time before the active edge of the state
machine clock. The second reason for the second register is to prevent any
change in the command register from affecting a function in progress. The con-
tents of the buffered conmand register are decoded and the appropriate control

Chap. 6: Input and Output Operations 3an

N2

lines asserted to the tape contraller. The commands and levels will be determined
by this logic; thereguired pulseswill be generated by the state mechine.

The word count register and the addressregister are found in Figure 6.18(b).
These registers must act as registers to be filled by pmgrammed 10 instructions,
and as countersto be decremented When under the control of the state machine.
This is accomplished by usng two clocking sources. When the state machine is
idle, SM_IDLE will be asserted, and the clock is derived from the programmed Yo
sgnds. However, when the state machine is nat idle, the registers are decre-
mented by a signa fmm the state mechine itsdf (WC_DEC-L), One feature of the
system that will rd be used in the normd action of trandfersis the ability to read
the contents of the word count register. This is provided by the tri-state drivers
induded with the word count and address registers, when the appropriate engble

Tri-state driver
to read WC register

WC_BUS-L
X § TS
driver
Count
BDATA(15:0)-H —» — BDATA(15:0)~H
———
ax ®@
i We=0-L
Wrd count
register
Driver to
8 MSB of read 8 WB
address of AR
register
MSA_BUS-L
= qs TS
driver
- Count .
BDATA(TI0)-H —= —_ BDATA(7:0)-H
SM_IDLE-L ——
>ﬂ-llET
— ADR QUT(23:0)-H
Address to
LSA_BUS-L bus drivers
DS e LR
= driver
BDATA(15:0)~H —= BDATA(15:0)-H
——
Count
an
- Driver to
resd 16 LSB
16 LSB of of AR
address
register

Figure 6.18(b). \Word Count Register and Address Regider.

Chap. 6: Input and Output Operations

signal is asserted, the information is enabled onto the internal data bus (BDATA)
and then to the UNIBUS

The data path is included in Figure 6.18(c). The path to and from the busis
provided by a pair of bidirectional registers. These devices contain two registers,
one for each direction. During a write operation, information from the bus is
obtained 16 bits at a time, and loaded into the register by a signa derived from
the request line (DMA_OUT_CLK). This information is then fed one byte a a
time to the controller, usng the TAFE-DATA lines. The sdlection of the byte to
send to the controller is handled by the enable lines (LSB_ENBL, MSB_ENBL),
which are aternately enabled during a write operation. The timing signals for
loading and reading the registers are generated using control signals from the tape
unit and the state machine.

During a read operation, the data path is reversed. The register in the
reverse direction is loaded by a signd derived from the control lines of the tape
controller (TAPE-MSB, TAPE_LSB). The resulting values are enabled onto the
internal data bus when needed during the DMA operation. As noted earlier, the
data lines to the controller are asserted with open collector drivers, and the lines
from the controller are received with resister networks. The state machine con-
troller is responsible for asserting the appropriate information onto the
TAPE_DATA lines, from one of the DMA output registersor thedata in lines.

The status register is also included in Figure 6.18(c). This register monitors
signals from the tape controller and from latches interna to the interface module
itself. such as the interrupt enable bit. When a programmed /0 ingtruction
requests this information, it is loaded into a register to keep it stable during the
read operauon. The register has tri-state outputs that directly connect to the inter-
nd data bus. This status information will be enabled onto the UNIBUS &t the
appropriatetime by the DMA system.

The logic for controlling the interface module is shown in Figure 6.18(d).
Thereare two state machinesin this implementation. The first is for the action of
the interface module itself, the second is for the DMA controller. The controller
specification calls for command pulses which are a minimum of 200 nsec. For
that reason, the state machine controlling the action of the interface module is
clocked at 5 MHz, which provides a 200 nsec state time. We will describe the
state diagramsfor the system later in this section. The state machine used to con-
trol the interfacemodule is constructedfrom two registered PROMs, each of which
contains 2,048 words of 8 bits. This requires 11 bits of address. Five of the 11
bits are provided by the present state of the system: the remaining 6 bits are
derived from the inputs to the system. Since more than 6 inputs are required to
control the state machine, the 6 used at any one time are sdlected with a multi-
plexer network. The outputs of the registered PROMs provide the needed control
and state information. The two devicestogether have 16 outputs: five of theseare
usd for present state information, and 11 are used for control signds.

The state machine which is used for DMA and interrupt requests is also
included in Figure 6.18(d). This consists of two parts: a synchronizing register
and a registered PAL. These parts need to be capable of fairly high speed, since
the cycle time for the unit is 50 nsec. The function of the DMA controller is to
control the interaction with the bus for direct access to memory. The outputs of
the PAL drive both the bus signalsand the internal registers involved in the DMA
transactions. Also included with the control circuitry are sone flags thet handle
communication between the two state machines, and a timer used to create a
rewind signal that is longer than 2 psec.

Chap. 6: Input and Output Operations 313

k)7

8 Bit bi-directional
regrster for MSB of
data transfer

RITE-L
Js
Drivers
B0ATA13:7)-H -— — DATA_OUT (7:0)-,
-t
——l
TAPE _NSB-L L 20— Data out to
DMA_OUT_CLK-L Open Collector tape eontrellier
[> Torwe Output Drivers
RD-H -
MSB_ENBL-L e | TAPE_DATA(7:0)-H
220-330 Ohm
RO-L Resistor
—Je TS Networks
driver
SATA(7:0) -— DATA_IN(7:0)-L
- - —————
TAPE LS8 L>m~! Data in from
tape controller
> Tonwe 8 Bit bi-directional
om register fw LSB of
L.SB_ENBL-L data transfer
s —-—
BSETX-L
9 (Data Ready!
BINPUT X-H DR-H
BOUTPUTXH b TAPE _LSB-L
WC_DEC-L L TAPE_MSB-L
€
RITE-L L LSB_ENBL-L
DTA_ENBL-L A b MSB_ENBL-L
S
WRT-H b DMA_OUT CLK-L
ADR_ENBL-H .
Timing L . for tiri . s §
SM_MSYN-H ; ogic iring signals for
= logic data register and DMA action
220-330 Otwm Register with
Resistor STUS_BUS-L [\ trl-state outputs
Networks A > ax -—
’ q
Signal
buffers BDATA(15:0)-H
_ - A — v
Control and
Status
Signals from Status
Tape controller Latch register

Latching devices
to hold appropriate
status signals

Figure 6.18(c). Data Path to and from Tape Controller and Status Register.

Chap. 6: input and Output Operations

Registered PROMs fw
implementation of
interface state machine

i ITR UK-H
. Multiplexer to B> ax CLR_CMD_FLG-L
Register select inputs p— “ AR INC-L
SMz_clock - to next state P WC_BEC-L | Control
—_ [signals
- — p— for
nals which need to o— interface
pégsynshsbadbedesdtio g DR_CLR-L
te machine Signals synchronous P 00 OMAH
with state machine Cbia!
A - @ BSETX-H SETX-L
with stf_ile machine ::] *!/Dc—mn . Direct
Present state _——l—-D>0-———— %cl)n::”
Present state 2of a D REWIND-L | controller
27545 r—'—|
| | I
Feedback of

present state

Registered PLA for
impiementation of
Qv state machine
(feedback path

is internai)

‘ OMA_REQ_CLR-L
T SM_BBSY—H \
Reqister 53,575“'“
20MAz clock SM_ADR_ENBL-H | Control lines
(> ax SM_MSYN-H | fw OMA
- - TR PSRIZIH_ | transactions
- GHA_PSRILI-H
Input signais !
fopu S DMA_PSR10) -H J
machine

Figure 6.18(d). State Machine Controllers.

The last of the diagrams, Fi gure 6.18(e), contains the logic needed to con-
nect to the bus with the requisite gates matching the bus requirements. The
address and data buses are provided with both receiversand driversto present a
minimal load to the bus as required by the bus specification. The interrupt vector
address can be specified by the user, and the interface module will assert this
information ont o the bus at the gppropritetime.

The action of the interface module is described by the state diagrams
included as Figure 619, As mentioned above, the minimum time for the tape
controller is 200 nsec, whereas the UNIBUS will be mogt effectively used if the
state times are much less than 200 nsec. Thus, the statetime for the controller of
the interface moduleitself is 200 nsec, while the DMA controller operatss with a
50 nsec clock. It would be possible to combinet he two state machines, but that
voul d result in a much larger system. Hence, the decision was made to use two
different state machines.

Figure 6.19(a) deals with the behavior of the interface module itself. The
states USed {0 perform the work of directing t he tape controiler are identified, and
the signalsthat ne=d to be asserted are identified in each date. A description of

Chop. 6: Input and Output Operations 315

316

UNIBUS uses only 18 address (A)
other interfaces will use

lines:
more address lines.

A(17:0)-H

e

Unused lines 1n this
Interface need to be disabled.

BADDR (23:01-H

The address is supplied
to the address bus only
when needed by s OMA
transfer

ADR_QUT (23:0)-H VER

—

ADR_ENBL-L

A(17:0)-H

—

—

UNIBUS enabled to internal
data bus only when address matches

and writing to register

The data lines of the UNBUS

Interrupt address
specifled by user

—

Tri-state driver
to supply 1interrupt
vector to internal

data bus

RCVR

- BBATA provides we driven mly when a data
DATA ENBL-L [T S bidirznoml word or vector information
driver internal data bus 1s needed
D(15:0)-L BDATA(15:0) -H DRIVER D(15:0)-H
S — -
RCVR LWNEA-EMRL-L da
VEC_ENBL-L A
driver
DIP switches
or wire
jumpers to
set address LJ_

Signals from interface
and OMA control to
drive UNIBUS control lines

Control lines
of the UNIBUS

DRIVER

—t—

DATA ENBL-L

—

Q
)

——

Control signals

from UNIBUS

Buffered signals
to interface

Figure 6.18(e). Circuitry far Bus Interaction.

the purposeof each stateis included in Appendix B: hers we will briefly describe
ome of the action generated by the state machine.

The interfacemodule is initialized by forcing the present state to zero, since
that isa relatively easy thing to do with the present state register. Thisis used to
initidize both the eectronics o the interface module and the tape controller.
Once the initidization has occurred. the interface moves to the idle state, where it
will await further direction.

If the ingtruction which is received by the interface module does not require
tape movement, then State 3 is vidted. This causes the appropriate information to
be clocked into the retaining registersand the action flag to be cleared; then the
system returns to the idle state.

If a command that requires tgpe movement is received, then the system
moves to State 4. If a rewind is required, then the system moves to State 20 to
issue a long enough pulse, then to State 23 to await then completion of the tgpe
movement. If a writefile mark (WFM) command is desired, the sysem movesto
State 6 to creats the SETX pulse then to State 23 to await the completion of the
tape movement. Mie that the appropriate command lines to the tape controller

Chap. 6: Input and Output Operations

WC=0
wcr:u-’o
=0 a
we FSF
Wait
stop

DR and DSTP

Wait
DR stop
DR
and and DSTP
WC=0 WC= and
WC=
R do
O | (o) (eon
I} DR_CLR 18
OMA
done OMA
not done Wait
Wait
stop
FLCL FG and not
INTERRUPT ENBL

gs

FLCL_FG

FLCL_FG and
INTERRUPT ENBL

Figure 6.1%(a). State Diagram fa Tape Controiler Interface M odule.

Chap.6: Input and Output Operations

e

n7

318

are generated by the logic associated with the command register. and that the state
machineis used only to create the pulses needed.

The remaining commands are file search forward (FSF), file search reverse
(FSR), read, and write. All of these commands require a nonzero word count
register, 0 if that condition does not exist in State 4, the state machine returns
immediately to the idle state. If, however, the word copnt register is nonzero,
then the action can begin. /m

The file search commandsassert the SETX pulse, decrement the word count,
and then wait for the controller to indicate that it has seen an end of file mark
(EOF). This is repeated until the word count register is equa to zero. If the
specified action was a FSF command, then the desired movement is complete, and
the action of the interface module moves to state 23 to wait for the tape move-
ment to stop. If the specified action was a FSR command. then the state machine
causes one more file search command. this one in the forward direction. This
action leavesthe tape at the beginning of afile rather than at the end of afile

The write command starts the tape movement and then requests that the
DMA state machine perform a DMA transfer to get the information to write onto
the tape. Then the address register is incremented and the word count is decre-
mented, and the interface module waits for the controller to take the data The
activity of the data path, while the controller takes the data. is coordinated by
pulses from the controller itsalf, rather than from the tape machine. This main-
tains synchronization between the devices in the data path and the tape controller.
When the information has been taken by the tape controller. the interface module
checks to see if more information is needed (is WC cqual t0 zero?). If the transter
1s complete. the interface module waits tor the tape movement to stop.

The action of the read command is initiated by the SETX pulse, then the
interface module waits until data is ready. Thiscondition will exist when the con-
troller has extracted 2 bytes from the tape and placed them into the two registers
on the data path. When this has occurred, then a flag is set (data ready, DR) and
the appropriate action can be requested by the interface module. If the word
count has not reached zero, then a DMA transfer is requested to place the informa-
tion into memory. This also results in decrementing the word count and incre-
menting the address register. However, if the word count register has reeched
zero, then more data is being extracted from the tape than expected. The result
here is to not write the information into memory; rather, an error flag is set and
the data ignored. When the read action is completed, the controller will send a
stop indication (DSTP). If the word count register has not reached zero at this
time, then fewer words than expected were received from the tape, and this also
causes the error flag to be set.

The find portion of the state machine of the interface module is used to
wait for the controller to signal the completion of the tape movement, which is
indicated by the FLCL_FG flag. At that time, an interrupt is requested if the inter-
rupt flag is set in the status register. The find action of the state machineis to
return to the idle state to await the next instruction from the CPU.

The interaction between the two state machines is handled with a simple
flag arrangement, and when a DMa interaction is needed, the DMA_REQ flag is
set. The DMA state machine is then enabled to direct the interaction with t he
UNIBUS. Thisinteractionisshown in Figure6.19(b).

The DMA state machine remains in the idle state until a DMA transfer is
required. |t then asserts the bus request signd (BR) to gain accessto the bus.
When the arbitration system grants access, then the SACK signal is asserted, and

Chap.6: Input and Output Operations

Figure 6.19(b). State Diagram fa
DMA BusInteraction.

the gate machine waitsfor the previous bus transfer to complete. When this con-
dition is detected, then the transfer is performed: the address is enabled onto the
address lines (States 2, 6), the request line is asserted (MSYN), and the sysem
waitsfor the acknowledgeline to be asserted in response (SSYN). When the ack-
nowledge is detected, the DMA state machineretumns tot he idle state releasing the
asserted Signalsin the appropriateorder. Also, the retum to the idle state sets a
flag that is detected by the state machine of the interface module to indicate that
the requested transfer is complete.

If the action is an interrupt sequence rather than a data transfer, then the
sane adtion is needed, but not all of the same signais are used. Thus, the

Chap.6: Input and Output Operations 319

6.6.

appropriatecontrol of the gates and tranceivers in Figure 6.18(e) allows interrupt
and DMA transfers to be controlled by the DMa sequencer. For example, the
request signal (MSYN) is not used for the interrupt sequence, and hence the bus
driver for that signal is disabled during that operation.

The interface module presented here is a relatively straightforward imple-
mentation that utilizesthe conceptsof bus interaction and sequential circuits. The
system can be nade much nare complex in itsinteraction by includingadditional
instructionsand expanding the state diagram. For example. the controller hast he
capability to read and write when the tgpe motion is in reverse. This ability can
be harnessed by including appropriateinstructionsin t h;Zetiniti on of the interface
system, and then including appropriate action definitiehs in the state machine.
Other action, such as block searchs and unloading the tape, an also possible with
a more complex system.

This interfacesystem is an exampleof the applicationof the techniques dis-
cussed in earlier portions of this book. The detailsof the interface module were
determined by a thorough examination of all of the applicable information. The
electrical requirements and protocol specifications of the bus used in the system
were determined. Also, the electrical requirements and protocol specificationsof
the tape controller were determined. And the specific action of the progranmed
/O instructionsof the system was determined. Once this information had been
obtained, then a data path block diagram of the system could be generated, and
the design of the control system performed. The design required combinational
techniquesto create many of the signals and conditionsthat were not tied to the
pulses generated by the state machine. Combinationa circuits were also applica
ble in those areas where the sequentiality of action was determined by other sys-
tems. such as tilling registers from the bus Finally. the sequential action of the
interface module was defined by state machines and implemented with simple
programmablelogic devices.

VLS Devices for Interface Systems

The example of Section 6.5 included individual TTL devices for every aspect of
the system, from address registers to bus controller. However, newer technology
has resulted in a variety of devicesthet place portions of an complete interface
moduleinto VLSI devices. The designerof an interfacesystem is then required to
ascertainthe capabilitiesof the devices and apply them in a reasonable manner to
the systems at hand.

The manufacturersof microprocessor systems have recognized that users of
the microprocessorswould almost always be desirousof interfacing the micropro-
cessor to physical devices of one kind or another. Thus, they have provided a
variety of interface devices to work with their systems. Perhapsone of the first
availabledevices was the 8255, a block diagram of which is shown in Figure 620,
This device was created to work with the Intel 8080, and has been usad not only in
8080 systems, but many other types of systemsas well. Thisdevicecontainslogic
sufficient for 24 bidirectional lines. The control logic internal to the 8255
specifiest he node of operation for the external lines, whether they an inputs or
outputs, and when to accept (supply) the information from (to) the bus. The
bidirectional data bus lines alow the deviceto comnect directly to buses of a
miCroprocessor system, as shown in Rigure 621 If the data bus of the micropro-
eessor system is8 bits wide. then the 8255s are accessed one at atime If thedata

Chap. 4: input and Output Operations

Data |
8 Bit Data Bus 4-—/84’ e

Buffers

Internal
Data Bus

8/ External

8Bit [*
Register|

IV » Inputs/Outputs

4 Bii External
| Network|" 7'1 7 Inputs/Outputs

4 Bit 4/ External
— |Network” " T 2 Inputs/Outputs
Chip Select
Control
Address, Logic
Control lines
/ 8 Bit /QL, External
Registe inputs/Outputs
Control Signals
Figure 6.20. Block Diagram of the ¥255.
Address Bus
Data Bus
Micro- Program Address
processor Mamory armiry Deoder 8255 8255
(PROM) (RAM) | |

To external devices

Figure 631. Microprocessor System with 8255 InterfaceChips

busof the system is 16 bits wide, then both 8255s can be accessed simultaneously.
Or, they could be byte-addressable and accessed uniquely. The versatility of the
device, which allows using the device in any of three basic modes an each of the
interface elements, permits configurations thet fit the neads of many applications.

Howeva, the basic system nat ches t he buses discussed here: the address decoder

is responsible for identifying when the devices areto be accessed, and the other
timing Signalscontrol t he actual transfers.

Chop. 6: Input and Output Operations

321

One of the functions tha is a prime candidate for incluson in a single
integrated circuit is the circuitry required for a DMA operation. Many manufac-
turers provide controllersfor different types of microprocessor systems. A block
diagram of the Signetics SBC68438 is shown in Figure 6.22. As indicated in the
figure, the chip containsal d the logic needed to perform the DMA operations
with a system bus This includes registersfor storing the word count and
the address, as well as interrupt logic, daisy chain priority logic. and isolation
gatesfor the dataand address buses. The data busis also connected to the device
controlled by the SCB68430, 0 that when the DMA controller directs the peri-
pherd device to do so. the daa is directed to or extracted from the data hus.
Thus, the connection between the DMA controller and the peripherd devicedlows
the periphera to signa the DIVA controller when a bus transfer is needed, and the
controller to indicate to the peripherd when the data transfer should take place

The DMA controller can be used with any periphera that needs to perform
high speed transfers with a 68000 system. Such a system configuration is shown
in Figure 6.23. A DMA periphera device. such as the tape controller of the previ-
ous section. is connected to the data bus for transfers of data. and to the SCB60430
to control the data transfers. In addition. the device must be controlled by the
processor, and thereforea programmed /O connection is provided.

The use of DMA controllersin microprocessor systems greatly reduces the
number of integrated circuit chips required for controlling peripheras that need
the DMA cgpability. A number of other such devices are available from other
manufacturers. Among these are the 8237A from Intel. which is designed to work
with X-hit buses and contains logic for four DMA channels. The Am9516. which is
available from Advanced Mo Devices, 1s designed to work with 16-bit

Device Handshake
—p|

Internd
Dataand
AdBdr:ess oa
us Dais in
) l Control [Bup; Gt
Contral and
Status Regigter
I 68000 Daaand
‘ Bus [e——> Address
Il-r].tgeﬁao% Buses
ic an
Contral 16 Bit
lagc Ward Count Buflers |, Bus Contml
Register
:j Address [0 Chip Select
24 Bit o Decode |7 Address Bus
Addrass /8
Register
{’3;’;’“5{,, ‘ Interrupt
Registers Control

Figure 6.22. Block Diagram of the SCB68430.

Chap. 6 Input and Output Operations

Address Bus

Data Bus
Pr Data o SCB68430
63000 ogram Programmed O DVA
Micro- Memo Memory Command Lodic—]
procesor (PROA% (RAM) oy Controller
J
DMA Periphera
Device

Figure623 Microprocessor System with SCB68430 DMA Controller.

microprocessors, and contains two separate DMA channels. And the N§32203
from National Semiconductor is designed to work with the time multiplexed 32032
bus system. and it containslogic and registers for four separate DMA channels. In
each case. the integrated circunt contains a great deal ot logic to control the bus
ransters needed lor DMA action. but the user 1s required to provide the pro-
grammed 1/0 commands needed to control the action of the DMA peripheral.

Additional capabilitiescan be added to integrated circuits to further reduce
the number of chips required to do particular functions. One such exampleis the
DP8466 Disk Data Controller (DDC) fmm National Semiconductor Corporation.
The DDC not only contains the logic needed for DMA operation, but also the logic
for providing most of the interfacefunctionsto thedata stream of a disk system.
A basic block diagramof thedeviceis shown in Figure 6.24. Internal to the dev-
ice are registersthat control the DMA action (word count. address, ete), and also
registers that control the activity of the serial data stream. In this manner, dif-
ferent types of disk interface specificationscan be handled by the same type of
device. The bus connection presentsa tri-state interfaceto the system for transfer
of both data and address information. And the bus timing circuitsalow transfers
into the device(e.g., programmed /O set up of registers)as well as out of the dev-
ice. The HFO permits storing of up to 32 bytes of information in the system.
This alows data transfers to be performed in a burst mode: once control of the
bus is obtained, data can be rapidly transferred to/from memory. The remaining
logic is used to perform the functions needed to convert between the seria for-
mats used on adisk and the parallel format of the computer system.

The DDC not onlv has the ability to encode and decode the information
according to the serial protocolsused in disk systems, but it also has capability for
certain types of error detection and correction. As interfacesystems become more
complex, one of the functionsthat must be providedis the ability to detect errors
and, under the proper circumstances, correct them. We discussed simpk error
detection with parity codes in Chapter 2 as well as error correction with Ham-
ming codes. Serial codescan use parity techniques, but often they aso use poly-
nomial codes to provide a different form of error capabilities. With the amount of

Chap. 6: Input and Output Operations 323

Data and Clock

Signals to Disk
—b

Timing Information
«—

Seria Data
Controller

Serial Timing
and Control

Chip Select
I;ara}r;;eetrser Addrpss Lines
Registers
D Pattern
Recognition l Address/Data
Abaa [Y fro e B
DMA and Tig\in? a'nd
System [¢————» Contro
Intemlailng: o iming Signals

Figure 624 Blodk diagram of the Dps4ss.

logic availableon integrated circuits, the use of these mechanisms can be included
in the chips as shown by the DDC.

As with the DMA controller. the DDC can he used to control data flow in
systems, but the control of the disk itself is left up to the user. Consider the block
diagram shown in Figure 6.15. Much of the system is identical to the systems
shown in earlier tigures. The programmed I/0 signalsare used to control action in
the bDC as well as the disk itself. The DP84ss is connected to address and data
buses: some buffers, which are not shown in the figure, are required for this con-
nection. The data and control paths to the SMD disk require differential line
drivers and receivers, which minimize the effects of noise on the common data
lines. For other types of interface specifications, such as the 37506, National also
provides a data separator and a data synchronizer. The net effect is to have a
family of integrated circuits that connect to general microprocessor bus systems
and control disk systems. With this capability, a user can develop a disk system
to meet a variety of needs.

We will include one finad example of an integrated circuit /O controller,
which is the 7990 Locad Area Network Controller for Ethernet (LANCE) of
Advanced Micro Devices. Other manufacturers (Intel, National Semiconductor.
etc.) have similar Ethernet devices. The LANCE chip connects to a microproces-
sor system in @ manner similar to the other interface systems indicated in this sec-
tion, as shown in Figure 626. The only difference here is that a second chip is
required, the serial interface adapter. This chip provides the needed connection
for the 7990 to connect to Ethernet systems.

Internal to the LANCE chip a number of functions are performed. A basic
block diagram of the device is given in Figure 6.27. Like the other devices we
have examined in this section, there is a set of isolating gates to handle the data
and address linesof the bus In addition, a number of registersare included in the
system to control t he action of the device. Theseincludethe normal DMA type of
registers, aswell asregistersthat control the Ethernet connectionitsalf. However,
the interaction with the memory of the LANCE is nare complicated than other

Chop. 6: Input and OutputOperations

Address Bus

Data Bus

processor

Program
Memoa
(PROM)

Data Programmed U/C NS8466
Memory Command Logig DDC

(RAM)
-t l I \Data and

; Special Interface
Control Signals Drvers and (Sl%r;]tg?sl

Receivers

! !

SMD Disk

Figure 6.25. Microprocessor System with DP8466 Disk Interface

Address Bus

ata Bus
i Dat.
provessor program Memory Am7991A
(PROM) (RAM) Am7990 o, Serial

LANCE Interface
Adapter

Connection to I

Ethernet

Transceiver

Figure 6.26. Connection of LANCE in Microprocessor System.

systems we have considered. The LANCE operatesby both building and examin-
ing data structures in the nenory areas of the prooessor. Thus, in addition to
transferring data to and fram memory, this unit also uses the ability to look at
memory t 0 control the activity of the Ethemetd 0 n

In addition t o the devices described in th's section, manufacturers al S0 pro~
vide a numbe of athe functions These indude red time clocks for keeping

Chap.6: Input and @t Lt Operations 325

+—— Bus Buffer DMA/
Address and Data Path Microprogram
Data Lines Control ore

LANCE/ Connection
CPU 3 to Serial

—— ContB rol I?;g Hace
Station . lapter
Control Interface Address R | Serid 1O
Lines Detection Lz%?{: interface [——>

Figure 627. Blodk diagram of the Am7990.

track of the time, event timers to ascertain the time required for internal and exter-
na events, serid communications controllers, network interface systems. fiber
optic interface modules, and error handling devices, to name a few. In al cases,
the user myst provide some programmed (/O capability to control some of the
basic functions, and the interface unit handles as much of the automatic data
movement as feasible. One of the challenges Of system architectSand designers is
to use these devices I reasonable ways in USEful systems.

6.7. 170 Channels and /O Processors

The action of transferring information to and from a computer can take many
forms, as we have seen. The /0 mechanisms usad as examples have been limited
to interaction between a processor and an /O deviceconnected by & common bus.
Indeed, this is the normal connection mechanism for bus-oriented systems used in
minicomputers, workstations, and microprocessor systems. Another method of
dividing the work of the computer system is to remove from the CPU the respon-
sibility for detailed control of 1/0 devices, and limit the CPU to computing and
controlling. Logically, this resembles the situation depicted by Figure 6.28. The
CPU operates normally, executing programs found in main store and manipulating
data according to the instructions found there. However, when iateraction with an
I/0 device is required, the CPU requests this interaction by sending a command
directly to an 1/0 device controller. This unit is specificaly designed to pmvide
control for £/0 devices, which it proceeds to do according to the instructionsof the
CPU. Since the (O device controller has its own connection to main store, the
data transfersoccur directly to locationsin memory.

The KO device controller shown in Figure 6.28 is sometimescalled a chan-
nel, and different types of channelsare used in different conputer systems. The
channel is essentially a speciad purpose processing element designed to do one
thing: control 1O devices. In generd, the programs executed by the channel
reside in main store, just as the programs executed by the CPU The CPU indi-
cates to the channel the work to be done by creating programsfor the channel to

326 Chap. 6: Input and Output Operations

Channdl

Man Store
le}
Device)
Controller YO Device
CPU

Figure 628 Contrd of /0 Deviceswith a Channd

execute from the set of operations available to a channdl. In some systems these
/0 commands are called channel command words (CCWs). After the action is
initiated by a direct command from the CPU, the channel will assert the proper
signals to cause the transfer of information from the /O device to the memory.
However. the channel has more capabilities than a simple /O interface module,
such as that presented in Section 6.5. The channel may perform data conversion
on data moving in the system. as wel as handle error checking and correcting.
Also. the channel may interrupt the CPU at any time during the transfer, if the
situation requiresit. Also. the CPU may request information concerning the status
of the transfer a any time. and the channel will respond.

Although many different typesof channelsare used, channelsare sometimes
grouped into the classifications used by | BV With this classification method,
channels are grouped into three categories. multiplexer channels, block multi-
plexer channels, and selector channels. These are shown in Figure 6.29. A
multiplexer channel, as its name indicates, multiplexes between a number of /O
devices. Each transfer has associated with it an O device addressand a byte of
information. Each device will have a specific address associated with it in main
store, and the multiplexer channel must maintain the correlation between the phy-
sical device and its associated storage area in memory. Thus, the multiplexer
channel maintains a number of addressesand other information about the physical
devices over which it has control. One of the basic requirementsfor the devices
connected to a multiplexer channel is that they are slow enough to alow the chan-
nel to switch between them as needed. since they al share the same communica-
tion path. Thus, these devices are generaly of a nature conducive to the slower
speeds: terminals, modems, electromechanical devices, CRTs, and so on.

The selector channel is designed to provide high speed transfers from an
external device and the memory of the system. As such, it is very much like a
DMA controller: once the system has designated the device to use and the location
in memory of the information, the selector channel executesthet transfer or con-
trol operation before initiating another. This is true even if the operation is
merely a track-to-sack seek of a disk or other movement command. However,
because of the creation of programs consisting of channel command words in
memory, the selector channel may move on to a second transfer as soon as the
last data movement of the first transfer has been compl eted

Chap. 6: Input and Output Operations 327

CPU

Man
store

LS

Muitiplexer LS Ls LS

Channel l —= T]
Block

Multiplexer MS MS MS MS
Channel | 1 I I
Selector HS HS HS HS
Channel l T I I

LS= Low Speed device

MS = Medum Speed device
HS = High Speed device

Figure639. Computer System with Multipie Channels.

The block multipiexer channe! is desi gned to have some of the characteris-
tics of both the multiplexer channel and the selector channel. The block multi-
plexer channel is capable d multiplexing between devices. as the multiplexer
channel. but the basic unit of information is no longer a byte. hut rather ablock of
information. Thus. once the transfer of a block Of information is Started. the
channel will maintain the logical connection between the deviceand its associated
location in memory. When the transfer of the block has been completed, then the
channel can moveon to another device.

A channel provides a mechanismfor the processor to off-load the burden of
170 control to a device specificaly designed to handle the interaction. The chan-
nel controls the interaction with the O devicesover the channel bus, which is an
8-hit transfer path. The devices that connect to the channel bus have the same
problem examined earlier in the chapter: transfers are made over a shared data
path, and the interface modules must be designed to permit this to happen in a
uniform manner. However, the interface problem is somewhat smplified, since
the channel is alwaysin control of thebus. Once the channel action has been ini-
tiated, no further action is required on the part of the CRU until the transfer is
complete. This leaves the processor free more of the timeto do what it does best:
compute.

When a computer system is configured with a number of channels, the sys-
tem architect includesa sufficient number of channelsto provide the [/0 capability
needed by the system. The transfer rae of the memory systems used in large
computer systems is sufficient to alow several channel systems to operate simul-
taneously. Therefore, the architect is free to utilize enough channels to meet the
maximum transfer rate required, or to use a small number of channels to provide
capability at a minimal cost.

Channels are one example of an input/output processor (I0P). FigureG D
shows a system configured with a number of processing elementsand 10Ps, The
figure indicatesthet the 10Ps are dedicated to specific functions, such as disk or
tape systems. This need not necessarily bet he case. The basic requirementfor an
IOP isthat it be capable of controllinga device and interfacing to another system.
Thus, the tOPs shown in t he figureeach perform a designatedt ask, and present the

Chop. 6: Input and Output Operations

CcPU CPU cPU cPU MEM MEM MEM MEM MEM
| I | I I I |]
[?/'g‘ TI? Lowv%)eed
Processor Processor Processor
<>
Disk

Disk

Disk

00O

Digitizer

000

Printer

000

Figure 6.30. System With Multiple Processors and 10Ps.

results tothe larger computer system. In this context, many of the units described
above have the characteristicsof 10Ps.

Additional systems that fall into this classification include the Am5380 SCSI
(Small Computer Systems Interface) Interface Controller, made by Advanced
Micro Devices and the 8089 /O processor, made by Intd. B ock diagrams of
these systems are shown in Figure 63L Also induded in Figure 631 is a
diagrand the 8044 remote universd peripheral interface.

The SCSI interface definition providesan 8-hit data path to peripherds. and
anumber of disksand tape units have been designed to be connectad t 0 computer
systems by using this protocol. Tothe controlling CPU, the AnB380 appears as a
set of eight registers; these could be located in the memory space 25 memory
mapped W or in a separate W gpace. The controlling CPU monitors activity on
the SCSI bus and requests appropriate action by reading or writing to these

Chap. 6: Input and Output Operations 329

CPU Interface

10 Chard 1

Device
Connection
>

Channel

Controt,

Register
ile

CPU

-

10 Chard 2 |

Device

Connecting |

Control,

ile

E&§

—» BB
Bus Intertace

and
<—> Controt
Signals

Figure631. 10ps: (a) SCs! Intaface Controller; (b) 1/0 Processor, and; (c) Ramate

regisers. This device mugt be utilized in conjunction with other devices to per-
form the DMA transfers required for high peed operation. In this type of a
configuration, the Am5380 is used to provide the SC3 bus connection. and the
other portion of the circuitry controls DMA interaction with the host. To control a
number of SCS transfers smultaneoudy. a system could be configured with
Sverd Ams380 devices Each of these units would be capable of transferring
information directly into the memory system under DMA caird. The AmS5380
can also be utilizedin t he design of peripheral unitsthat connect toaSCa bus, as
it can be atarget as well as an initiator on the bus.

Decoding
] 1 1)
/ SCS! Regigers”
Error
c&'gg’ Detection and Functions |
—
SCSI Bus
Interface
Two 16 Bit
Program Data "
Memoiry Memory T&%{]ﬁg%nt
8051
CPU
64Kb Prog. O Serial
Buz‘e\ '?-’gms U{e]
Controt Unit
Universal Peripheral Interface.
330

Chap. 6: input and Output Operations

6.8

The 8089 /0 processor is a device that contains a microprocessor capable of
controlling interaction with two /0 devices. The unit is compatible with 8086-
and 8088-type microprocessors, and provides high speed DMA capabilitiesfor two
separate devices. |t isdesigned to intelligently control transceiversconnecting /O
devices to a microprocessor system. The system was created to be utilized in the
memory space of the host CRU; communication between host and /0 processor
ae accomplished by passing messages in the memory space. The instruction set
of the 8089 has been created to function efficiently in its role as data mover, and
the instructionsinclude a number of load, store, and move capabilities, as well as
conditional and unconditiona branches, and minima arithmeticcapabilities. Dev-
ices of this nature can be used to remove from the host CPU some of the mundane
action needed for 10 transfers, allowing the CPU to concentrateon the computa-
tional aspectsof the system.

In addition to LS devices. such as the Am5380 and the 8089 which control
bus interaction. other devices are available to provide lines that can be connected
directly to the control lines of 170 units to control the interaction. One such unit is
the 8044 remote universd periphera interface. also shown in Figure 6.31. This
unit contains an 8051 CRU capabledf asserting lines needed for control of YO dev-
ices. The 8044 provides 24 programmable pins, so that a designer could create
signalsfor controlling the action of peripheral devices, and interfacing those dev-
ices to a processor system.

Channels and 10Ps provide a mechanism whereby a system can divide the
tasks that are required — computation and communication — between processors
that are more appropriately contigured to the task. Moving FO-oriented tasks to
separate. specialized processors has two immediate benetits. Firdt. the transfers
required by /O unitsare in general much slower than memory transfers, since lim-
its are imposed by the electrical and mechanical nature of the /O systems. This
means that the IOPs can be constructed with medium speed technology and dev-
ices. The second benefit is the release of the time commitment from the CPU,
sinceit no longer has primary responsibility for every command given to O dev-
ices. Thisallowsthe apparent system speed to increase.

Conclusion

The communication mechanism between the processing element and the external
world is a very important pan of any computer system. By this mechanism data
is obtained by the CRU for use within the system, and resultsof the operationsare
made available to periphera units, whether those units are computer systems, or
disks, tapesor other periphera devices.

The /O mechanismsare an important part of the functioningsof a computer
system. To assess the impact of the [/O system. a thorough analysisof the system
should be performed. This will allow evaluation of alternative utilizations of the
busing schemes and other /0 mechanisms. matching the interconnection features
with the characteristicsof the processor(s) and peripherals.

Busing systems alow different modules to communicate with one another
over the common communication medium. Asynchronous bus communication
protocols allow the transfersto proceed. controlled by signals generated by both
sender and receiver. This allows the transaction to seek its natural transfer rate
for the bus. Asynchronous mechanismscan be used with buses that have separate
addressand data lines, as well as buses which time multiplex data and addresson
the same set of lines.

Chap. 6: Input and Output Operations 331

6.9.

Information can also be transferred on a bus in a synchronous manner. The
protocolsfor synchronous bus systemsallow multiple operations, such as arbitra-
tion, transfer, and acknowledge, to occur simultaneously. For this reason, the data
rates for synchronousbus systemsis generally higher than a rate for an asynchro-
nous bus.

The task of identifyingthe controllerof a bus systenris-the responsibility of
an arbitrationsystem. The arbitration mechanism can be parallel in nature, which
allows for high speed arbitration based on agorithms of arbitrary complexity.
Anocther arbitration mechanism is serial in nature, with each module cooperating
by passing a grant signal if access to the bus is not required. This method is
necessarily slower than the parallel system, since decisionsare made in a serial
fashion. Another arbitration mechanism is polling, which is not used for bus
ownership recognition. but is used in identifying active /O devices.

Control of activity of peripheral devices is achieved by speciadized /0
instructions, or by using memory mapped 1/0 techniques. By using instructions
that control the action of peripheral devices. a processor can initiate transfers and
monitor the statusof the system. The complexity of the interface module between
the processor and the peripheral units determinesthe responsibility of the CPU. If
minimal capability exists within the interface module, then the CRU must monitor
the status of the peripheral and causedl action with programmed /O instructions.
If the interface module is capableof interrupting the processor, then the CPU can
continue processing and service the /0 device only when action is needed.
Finaly, if the interface module contains the ability to interact directly with the
memory, then the CPU can initinte a transfer and he interrupted only when the
action iscomplete. This direct memory uaccess minimizes the time required by the
CPU for controllingi/0 functions.

Channels and /O processors are specialized processingelements designed to
remove the elemental /O concerns from the CRU. These processorsdirectly con-
trol periphera elementsto perform the data transfers and other functions required
of O devices. With the byte multiplexing technique, the channel switches
between /0 devices as needed and tags each byte as it is obtained. This alows
many slow speed devices to be attached to a single channel. A block multiplexer
channel operateson a similar principle, but the units of transfer are blocksof data
rather than bytes. A selector channel selects one /O device, and transfersdata at
high rates to or from that device before being switched to a different peripheral
unit.

All of the techniques mentioned above = bus systems, arbitration systems,
programmed /O mechanisms. direct memory access, interrupts, channels, and
10Ps — are utilized to transfer information to and from a computer system. By
using the various mechanismsas called for by the peripheral devices, computer
systems, and desired data rates, an effective processing system can be configured
that will not only compute, but will also make available the results of the compu-
tations.

Problems

61 For a bus with handshakeprotocol shown in Figure 63, design a byte swap
register that functions at address 7765045, That is, writing to the specified
address will fill a register, and reading from that same location will present
the data in a byte swapped manner, with the data written on the nast

Chop. 6: Input and Output Operations

significant eight lines now availableon the least significant lines, and vice
versa Thesystem has an 18-bit address bus and a 16-bit data bus.

6.2 Design a hardware multiplier that will operate on an asynchronous bus sys-
tem with a 24-bit address bus and a 16-bit data bus. The multiplier must
use the shift and add algorithm shown in Figure 312 (and in Appendix B.
The unit must respond t o t he following addresses on the bus (readand write
are from point of view of CPU):

Address Read Action Write Action

777640, Read from multiplier regigter. Write to multiplier regiter.
77171642, Read from multiplicandregister. Writeto multiplicandregigter.
777644, Reed 16 leadt Sgnificant bits No action.

d result.
777646, Read 16 mogt Sgnificant bits No action.

o resit.

This multiplier will function for positive numbers only. The interaction
with the multiplier and multiplicand registerscan be accomplished by using
combinational circuits to interact with the control signals of the bus. When
the location of the least significant bits is accessed, a sequential controller
should perform the multiply on the data in the input registers, and present
the result when the multiplication process is finished. When the most
significant result location is accessed. the bits in the most significant bits of
the product register should be made available. without going through
another multiplication process.

63 One of the operations that proves to be very beneficia in the agorithm
known as the fast fourier transform (FFT) is a bit reversal, where the most
and least significant bits are exchanged, the second most and the second
least significant bits are exchanged, and S0 on. Design a bit reversal register
operating on a bus that uses the time multiplexed asynchronous protocol of
Figure 65, When the address 177776055 is written to, a register is filled.
When thet same locationis read, the bitsin the register are presented tothe
bus in bit reversed order. The bus lines involved are multiplexed between a
22-bit address and a 16-bit data vaue. The number of bits needed for the
reversal operation depends on the size of the #FT. What modifications
would be needed to allow adifferent number of bitsto be involved in the bit
reversal? That is, what changes in the design would be required in the
definition of the unit, and what logic complicationswould result?

6.4 Design a hit rotator for a time multiplexed asynchronous bus that operates
according to the protocol shown in Figure 65. This bus multiplexes the
common linesbetween a 22-bit address and a 16-bit data value. The rotator
works at thefollowingaddresses:

Address Read Action Write Action
17777642, Read rotate value. Write rotate va Le.
17177644, Read positionval ue. write position value,
17777646, Read value in rotate No action.

register rotated left
nunber of bit positions
specified by postionval te.

Chop. 6: Input and Output Operations 333

65

66

67

68

610

The rotator has two registers: a 16-bit rotate register, which contains the
value to be rotated, and a 4-bit position register, which identifies how many
bits (to the Ieft) to mtate the value Loceted in the rotate register. The posi-
tion reading and writing the mtate register and the position register simply
involve the bits in the registers in question. When a rotated value is
requested, then the value in the rotate register is loaded into a separate shift
register, which is configured as a mtator, and this register is rotated the
amount specified by the four bits of the position register. Whenthe rotate
has been completed, the valueis supplied to the bus, and the transactioncan
terminate.

Three types of arbitration mechanisms are discussed in this chapter. Give a
brief description of each of the mechanisms, along with an explanation of
what are the good characteristics (and why) and bad characteristics (and
why) of each mechanism.

Design a paald arbitration mechanism for eight master modules that
operates on the round robin principle. That is, once a master module has
been granted access to the bus, the module with the highest priority for the
next bus grant is the module-wish the next highest number (mod 8).

Both synchronous and asynchronous bus communication pmtocols are dis-
cussed in this chapter. Identify the salient characteristics of each type of
protocol. and describe the good and bad featuresof each. Which communi-
cation mechanism is faster? Why?

An interface is to he designed to control a data logger and provide the data
to u computer. The computer 1s organized around an asynchronousdata bus,
such as the UNIBUS or MULTIBUS Give a simple block diagram of the
interface, identifying the major data paths/registers and the principal contml
boxes. What information is transferred under program control? What is
transferred on a cycle stealing basis?

Consider a computer system with the following characteristics:

500 nsec memeory cycle time, both read and write
2 microsec ingtruction time for all instructions (very strange com-

puter, since most clear instructionstake less time than multiplies,
oraCALL)

memory mapped /O
standard instruction set

Create appropriate code segments to control YO transfers, and determinethe
peek transfer rate and the average transfer rate for blocks of 512 words, for

a, interruptdriven /O
b. straight programmed 1/0
<. DVA

Considert he partial system diagram shown below, which contains two CPUs
and two memories. Using the synchronousprotocel of F gure 611, what is
the shortest amount of time in which the two CPUs could write two words
(each) to the memories, where CPU A is writing to MEM A, and CPU B is
writing to MEM B. Plot the timing relationshipof the transactions, showing

Chap. 6: Inputand Output Operations

CPU A

cPU B Memory A Memory B

| l L

Synchmnous8us System (arbitration lines, data and address lines, acknowledgelines)

FigureP6.10. Partial Sysem Diegram with Synchronous Bus

6.11

6.12

6.13

the relationship between the arbitrationlines, data/address lines. and the ack-

nowledge lines. If the words are each 4 bytes, and the cycle time is 100
nsec, what is the data rate?

Repeat Problem 6.10 for read cycles, instead of write cycles. Assume that
the bus cycle time is 100 nsec. and that the memory modules require five
cyclesto obtain the requested data.

Create a diagram similar to Figure 6.12 that explains the time relationship
between commanders and responders on the SBl. Show with the diagram
both reads and writes, and configure the transactionsto demonstratea max-
imum transfer rate. Name three different techniques that could be used to
increasethe bandwidth of the bus.

An A/D converter is configured as shown in Figure P6.13. Desgn a DMA
interface that will input data to an asynchronous bus system from this A/D
convener. The definition ot the behavior of the intertace 15 as follows: The
interface 1s idle until a bit (theGO bit. which is the most significant bit of
the command register) is set in the command register. When the GO bit is
set, the interface will clear the DATA_AVAILABLE-H flag and wait for the
A/D convener to generatea new dat a sample. When thesampleis available,
the interface will request a bus transaction by asserting a bus request line
(BR-H). When the bus grant is asserted (BG-H), then the interface releases
the bus request and assertsthe addressand datalines. After a50 nsec delay,
the interfaceasserts the request line (REQ-H) and awaits the assertion of the
acknowledge line (ACK-H). The master then releasesthe request line, and
when the master sees that the acknowledge line has. been released, it will
release the address lines and decrement a word count register. This process

0lo p—
o b—
Ardag Input b
\ o —
— oy — 12 Ouput lines
wi—| = for data
N
—> SNPE o —
swple Tnput; mb—| New data is available
Sample process o l— when READY 1s high:
initiated by © b— / READY IS low during the
low-ta-high / sampling Process
transition Reaw

I

Figure 613 A/D Convener for Problem 6.13.

Chap. 6: Input and Output Operations 335

6.14

615

continues until the word count reacheszero. The interface contains a status
register readable by the CPU, which consistssimply of a busy bit (whichis
the most significant bit on the bus). When the interfaceis in the process of
transferringinformation to the computer the bit is aone; otherwise. the bit is
a zero. Thus, the busy bit will be set by the action of setting the GO hit of
the command register, and reset when the word count reaches zero, and the
transfer processiscompleted For this system, provide:

a a programmer's interface definition: the registersthat a programmer can
reach and their definitions

b. adata path block diagram that identifiesall of the necessary components
for the data transfers and their interconnection

C aset of control signals that can be used to control the interface (the con-
trol signalsof the data path

d. astatediagramof the interaction
e logic diagramsfor the system

The bus transactionsdescribed in Problem 6.13 are used to transfer informa-
tion to a memory module. Moadify the protocol description to read informa-
tion from amemory. Then design aD/A converter interface with the follow-
ing behavior: When a SEND-DATA flag is set, the interfaceextractsa value
from the location identified by the address register and sends it to the D/A
convener. and also resets the tlag and decrements the word count. When the
word count re aches rero. the word count 1s returned to an initial word count
value and the address register ts returned to an initial address value, and the
process is repeated. This system could be used to draw waveformson an
oscilloscope. For this system give:

a. a programmer's interface definition: the registers that a programmer can
reach and their definitions. Note that the programmer will not be able to
reach all of the registersin the system.

b. adata path block diagram that identifiesall of the necessary components
for the data transfers and their interconnection

¢ aset of control signds that can be used to control the interface (the con-
trol signalsof the data path

d astatediagramof theinteraction
e logic diagramsfor the system

Obtain the data manual for a DP8466 disk data controller (DDC), and using
that device design a disk interface for a 16-bit asynchronous bus. initiate
the design by identifying the possible transfers between the DDC and the
bus. Then identify the additional signals required to control the action of
thedisk. Then, complete the design process by creating an appropriate data
path block diagram, specifying the control system, and creating the appropri-
ate logic diagrams.

Obtain a data manud for an Am9516 direct memory access controller
(DMAC), and using a pair of devices design a high speed communication
channel that connects two 16-bit asynchronous bus systems. These are
essentially independent computer systems that are physically close together,
and information is to be exchanged betweent he two over the DMA channels.

Chap. 6: Input and Output Operations

6.10. References and Readings
{aMD85) Advanced Micro Devices, Bipolar Microprocessor Logic and Interface Data
Book. Sunnyvale, CA: Advanced Micro Devices, 1985.

[Baer84] Baer, J. L, " Computer Architecture,” Computer. Vol. 17. No. 10, October 1984,
pp. 77-87.

[Basr30} Beer. J. L, Computer System Architecture. Rockville, MD: Computer Science
Press, 1980.

[Bang5] Bartee, T. C, Digital Computer Fundamentals. 6th edition, New York: McGraw
Hill Book Company, 1985.

[BeNe71] Bell, C. G and A. Newell, Computer Structures: Readings and Examples. New
York: McGraw Hill Book Company. 1971.

{Chen74] Chen. R. C. H. " Bus CommunicationsSystems,” Ph.D. Dissertation. Pittsburg,
PA: Department of Computer Science, Camegie-Mellon University, 1974.

[Clus2] Cluley, J. C., Minicomputer and Microprocessor /faterfacing, New York: Crane,
Russak, 1982.

[DEC82] Digita Equipment Corporation, VAX Hardware Handbook. Maynard, MA: Digi-
tal Equipment Corporation, 1982.

[Dext86] Dexter. A. L., Microcomputer Bus Structures and Bus Interface Design. New
York: M. Dekker. 1986.

[Eggen3d} Eggebrecht. L. C.. lnrertucing to the IBM Personal Computer. Indianapolis. IN:
H. W. Sams, 1983.

[Flet80) Fletcher, W. L, An Engineering Approach to Digital Design. Englewood Cliffs,
NJ: Rntice Hall, 1980.

(IEEE75] Institute of Electrical and Electronics Engineers, "(EEE Standard Digital Interface
for Programmable [nstrumentation,” (EEE Std. 488-1975. The Institute of Electrica
and ElectronicsEngineers, Inc., October 1975.

Intel, Microsystem Components Handbook. ntd Corporation, 1984.

[LaZa84] Lazowska, E. D, J. Zahotjan, G. S. Graham, and K. C. Sevcik, Quantitative
System Performance. Englewood Ciffs. NJ: Prentice Hall. 1984.

[Lang82] Langdon, G. G., Jr., Computer Design. San Jose, CA: Computeach Press Inc,
1982.

[Lipo88) Lipovski, G I., Single- and Multiple-Chip Microcomputer Interfacing. Engle-
wood Cliffs, NJ: Rntice Hal, 1988.

{Mati80] Matick, R E, "Memory and Storage,” in (Ston80], pp. 205-274.

[Mati77] Matick, R E, Computer Storage Systems and Technology. New York: John
Wiley & Sons, 1977.

{Moto85] Motorola, The VMEbus Specification. 1985.

{Pawas1] Paker, A. C, and J. J. Wdllace, "An [/O Hardware Descriptive Language,” IEEE
Transactions on Computers. Vol. C-30, No. 6 June 1981, pp. 423-439.

[Poll83} Pollard, L. H, "Fault Tolerant BUS Communication Protocols for Computer Sys-
tems," Ph, D. Dissertation, Champaign-Urbana, IL: University of Ilinois, 1983.

(Shives) Shiva, S G. Computer Design and Architecture. Boston, MA: Little, Brown,
1985.

Chop. 6: Input and Output Operations 337

[SiBe82] Siewiorek, D. P. C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples. New York: McGraw H i Book Company, 1982.

[Sta187] Stallings, W., Computer Organization and Archii e. New York: Macmillan
Publishing Co,, 1987.

[T185] Texas Instuments, T k TTL Data Book. Volume2. Dallas, TX: Texas Instruments,
1985.

[Thie72] Thurber, K. J.. E D. Jensen, et al., "A Systematic Approach to the Design of
Digital Bussing Structures,” AFIPS Conference Proceedings — Fail Joint Computer
Conference. 1972, pp. 719-740.

[ThMa79] Thurber, K. J., and G. M. Masson, "BuUs Structures,” in Distributed Processor
Communication Architecture, Lexington. MA: Lexington Books, 1979. pp. 131-174.

{TiLeg2] Titus. C. A. J A. Tiws, and D. G. Larson, STD Bus Interfacing. Indianapolis.
IN: H. W. Sams, 1982.

[TsSi82] Tseng, C. I.. and D. P. Siewiorek. 'The Modding and Synthesisof Bus Sys-
tems™ Technical Report DRC-18-42-82, Design Research Center. Pittsburg. PA:
Carnegie-Melton Universty, 1982.

[Wilk87] Wilkinson, B., Digital System Design. Engiewood Cliffs, NJ: Prentice Hal Inter-
national. 1987.

Chap. 6: Input and Output Operations

