/

Memory Systems

One o the most basic functions of a computer is the retrieval of information
stored in @ memory element. This action is needed to obtain the instruction to
perform; it is also needed to obtain the data on which the instruction operates.
One widely used model of memory is shown in Figure 7.1. In this model the
memory consists of N consecutive storage locations. The size of a location is
dependent on the system architecture, and the width of the data path (w) isa func-
tion of the implementation mechanisms. But the model remains the same: the
address supplies the desired location, and the data is transferred to/from the
memory. The number of bits neded in the address is ﬁogz M. We will usethis
model to represent a memory system, and recognize that for special systems
appropriate changes must be made. In nany systems, the size of the memory is
givenin bytes, although that isnot t he normal width of datatransfers. One reason
for this is that the systemsare byte-addressable, and athough the width of the
transfer path may not be a single byte wide, the information is obtained by giving
the addressof the specific byte desired. Then. if more bytes are required, they are
obtained as needed by the processing unit.

The design of the memory unit is a series of tradeoffs, since a number of
different factors must be considered. These include the size of the memory (N
elements), the width of the data path (w), the organization method, and the speed
of access. The speed of the memory dependson many factors, including technol-
ogy of implementation and organizational method. Regardlessof the mechanisms
involved and the memory technology used, there will be a minimum time to
access information, which we will cdl 7,. This represents the shortest time
required to retrievethe information, and includes not only the access time of the
memory device, but also any delay caused by additional gates needed to provide
sufficient drive capability for the address or the dta Another very important
time is the minimum time between accesses. or t he memory cycle time, which we
will call 7. FOr “normal” memory interaction. where information is retrieved

339

Sue of Memory is
Address | N elements

o

Daa Peh

Figure 72 Memay Modd: Linesr Array of Locations

from memory. then work is done on it. and then memory is accessed again. r,, IS
not 3 limiting tactor, Since the action ot the system will not result in memory
accesses which occur fadter then 7,,. However, for burs mode access. where
severd consecutive memory elements are read or written, 7, is a factor that limits
the rate of transfer. One simplifying assumption we will make is that the memory
times are the same for the read and write cycles, which is not alwaystrue.

The memory itsef is configured in such a way thet al of the necessary
accessescan be made to it. That is, using one or more of the communication pro-
tocols described in Chapter 6, the memory is col to elementsthat need the
capability of data transfer with the memory. The simple representation of Figure
7.2 shows a memory that can be accessed by a processor and 1/O devices. The

Daa
Path
Processor
Memory
System
To ¥Q Devices
VO Interfaces
Data
Path

Figure 72 Memory System and Connections to Processor and /O Interfaces.

Chap. 7: Memory Systems

7.1.

data path (bus system) is aso used to alow the processor to control the action of
the YO interfaces. The configuration shown in Figure 7.2 is a very simplistic
representation, and the actual connectionsto the memory can be as simple or
complex as the application requires. In general, however, we would like to create
a memory with as large a size (¥) as reasonable within the design constraints,
with an access time (7,) and a cycletime (T) as short as possible. Let us look a
the memory hierarchy mechanisms used to try to accomplish this, then examine
detailsof the memory systemsinvolved.

Memory Hierarchy: Tradeoffs in Size and Function

In the description of their 1946 1AS machine Burks, Goldstine. and von Neumann
recognized that "'ideally one would desire an indefinitely large memory capacity
such that [infonnation] would be immediately available ..."[BuGod6]. But the
realities of the economicsand the technology are such that compromises must be
made. TheIAS machine contained 4.096 words of 40 bits each for the main store,
which **exceeds the capacities required for most problems that one deals with at
present by a factor of about 10." However, they recognized that the time would
come when this would not be sufficient storage for the problems to be solved in
the future. and therefore looked forward to the "constructing of a hierarchy of
memories. each of which has greater capacity than the preceding, but which is less
quickly accessibte.” The machines of todav indeed match this concept. and can
be represented by the block diagram shown in Figure 7.3. The fastest memory
elements are those closest to the processor: most systems have a small number of
very high speed locations, which we call a register bank. TheT, for the registers
is minimal. and in general the infonnation stored in registers is available in the
same cycleas it is needed. However, the cost of this typeof storage is very high,
whether the cost is measured in dollars, silicon red estate, or power dissipation.
For this reason, the amount of register storage availablein a system is relatively
small, from eight to sixteen registers in most general purpose systems, to over a
hundred in some special purpose and RISC systems.

The next element in the memory hierarchy is often a cache memory. The
purpose of a cache is to enhance the operating speed of the processor by making
available the most recently usad information by keeping it in a high speed tem-
porary storage. TheT, of acacheison the order of two CPU cycle times, and we
will discuss methodsof approaching cache designsin Section 74. The amount of

Increasing time to access; increasing size

cPU

Extended
Cache Main Seco Store
j Memory || Store — - DIZ -1 Storage

.Tape.

Increasing speed; increasing cost

Figure 7.3, Block Diagram of Hierarchical Memory System,

Chap. 7: Memory Systems 341

memory available here is generally small in comparison to the other elements of
the system. For example, the VAX (17780 has a 2-Kbyte cache, and some other
processors have even smaller caches. However, as the cost of memory decreases
with respect to overall system costs, larger caches are much more common.
Many newer systems have caches that contain 16 Kbytes to 64 Kbytes or more
incorporatedwith the processing unit.

The purpose of the cache is to maintain current information for rapid
retrieval. This is done in a manner that is transparent to the user. The program-
mer does not know of the existence of the cache, except that the speed of the sys-
tem is enhanced over a system with no cache memory. Thus management of the
data is done in a fashion determined at design time. in contrast to the virtua
memory systemsdiscussed below.

Theinformation in a cache memory is a high speed copy of what isin man
store, which is the "' standard” memory of the computer. The amount of storagein
a main store is system dependent, but it has increased with each passing year. In
contrast to the 4.096 locations of the {AS system, many systems require a
minimum of 8 Mbytesor more. The technology is now such that it is possible to
get 8 Mbytes in eight packages, which isone of the reasons for the increased size
of main store. The 7, of main store is about an order of magnitude greater than
the T, for cache. Thus, when a request is made for information, and it is deter-
mined not to be in the cache. then the system pauses until the information is
retrieved from main store. At that time the processing can continue. Some of the
issues involved in the design of the main store are discussed in Section 7.2.

The information resident in main store for a “standard™ computer system is
a sufficient amount of the operating system to maintain a continuity of action.
That is, a portion of the operaung system. I/0 storage arees, and other basic rou-
tines are maintained in the memory of the machine. In addition, the active por-
tions of user programs and data sets are availableas well. The portionsof the
operating system and user programs and data that are not active are kept on the
next level of the hierarchy, the secondary store. erm/

The purpose of the secondary store of this hi hy is to maintain copies of
all of the programs and data needed by the computer. Generaly this will be a
d sk, although it could be any block-orientedstorage device with a large capacity.
Such devices have been built with charge coupled devices, bubble memories, and
large RAMs. This device is generdly organized into files, and maintaining the
files is one of the responsibilitiesof the operatingsystem. In addition to thefiles,
there is an area which is used to maintain the current copies of user program
space; this area is often called "'swap space” The swap space is also under the
control of the operating system. The procedures and mechanisms established
within the computer system to manage the use of the memory system are done so
to effectively utilize the available system resources. With a combination of
software/system policies and the appropriate hardware, only copies of currently
active information need reside within the main store of the machine a any given
time. Still, the apparent effect is that user programs execute in "'virtual space,"
which frees up the user from being aware of the exact physical configuration of
the system and the orientation of his program.

The T of information on the disk is much longer than the T, for main store.
Note that the cache is created from a (relatively) small amount of high speed
RAM and main store is also electrically and randomly accessible, but with lower
cost, slower devices than the cache. Secondary store, on the other hand, involves
electromechanical devices, and therefore requiresrelatively long times to find the

Chap. 7: Memory Systems

7.2.

physical location of the information and effect the transfer. The ratio for
Tavum srome | TAcacee 18 ON the order of 10, but the ratio for Tag oy = /
T gy amn sroms ison the order of 100,000. For this reason, when information is needed
by the processor. and it is not in main store, the operating system will request the
needed information, place the current task on a queue, and get a new task to exe-
cute while waiting for the information to be retrieved from the disk. This action
of " context switching™ allows the processor to be shared effectively between mul-
tiple programs; such systems are often called multipmgrammed or time-shared
systems. To be effective, the secondary storage system must be sufficiently large
to handle the swapping functionsand the necessary file system operations.

The last member of the hierarchy shown in Figure 7.3 is the extended
storage. This consists of information stored on magnetic tape, which is slow in
comparison to the disk storage. This storage is generaly used for permanent
storage of programs and data, as well as transfer of information from one com-
puter to another. Some systems have automated tape storage capabilities. so that
parts of the extended storage can be considered a random access system with
capabilitiessimilar to the disk systems. albeit much dower.

The intended operation of the memory hierarchy is to provide a very large
memory capability, with the response time of a cache system and the storage
capability of a disk or tape system. The mechanisms used to perform these tasks
is the subject of the following sections.

“Standard" Memory Systems: Random Access Storage for
Programs and Data

The storage of information in computer systems is accomplished by utilizing col-
lectionsof individual storage elements, each of which is capable of maintaininga
single bit. Thus, for a device to be useful as a memory element it must have two
stable states, a reliable mechanism for setting the device to one state or the other,
and a mechanism for interrogating the state. Memories have bemn built of a
variety of devices tha match this characteristic, including relays, individual
vacuum tubes, storagetubes, and delay lines, which form a type of serial memory.
In each case, information in the form of bits was entered into the memory, and
then at some later time extracted for use by the system.

Storage tubesand delay lines dlowed for information storage in some early
machines, but the centrat memory technology next used by most computers util-
ized the magnetic propertiesof iron. The mechanism utilized by these memories
is depicted in Figure 7.4. A ferrite material is fashionedinto a circular, doughnut
shape, as shown in Figure 7.4¢a). The principle utilized by this device is the fact
that the magnetic orientation of the fenite materia will change to coincide with a
forced magnetic field, if the field is strong enough. e to the physical nature of
the material, once the magnetic orientation has been established, it will remainin
thet orientation until a different magnetic field is created to change it. Thisis
shown by the flux-versus-current diagram of Figure 7.4(b), which is known asa
hysteresis loop. When the current retums to zero, the orientation of the flux
remains inthediition thet it wasestablished. It will remain in thet orientation
until a current is passed through the drive line in the opposite direction. The resi-
dual magnetic flux within the core is used to store a single hit. If the flux is
aligned in one direction, the bit is a zero; alignment in the opposite direction
representsa one. The use of the core for the storage of information requires at

Chap. 7: Memory Systems 343

=

Flux

|

(a)

\E w Sensa line Current

—¢
(b)

Figure74 Magngic Memy Methanisrs(a) Magndic Con far Sngle Bit. (b)
HysteresisLoop.

least two wires passing through the center of the core. One line is usd to write
informationinto t he core:

e Forcing current in the drive line as shown in Figure 7.4(a) will creste a flux, ¢,
as shown: |t this orientation represent aone.

e Forcing current in the wire in the opposte direction from that shown in the
tigure will reverse the orientation o ¢: let this orientation represent a zero.

The other wire is used to sensethe content of the core. Note that establishingt he
orientation of the magnetic flux can indeed rcpreseng/binary vaues but we not
only nead to establish the vaue, we adso ned to retrieve the vaue stored in the
core. The sense line uses the fact that a wire in a changing magnetic fidd will
pick up a voltage: that voltageis sensed to identify the content of thecore. The
process works in the following manner:

o A negative current [opposite to the direction shown in Figure 7.4(a)] is esta-
blished in the drive ling the net result is to leave the core in an orientation
representing a zem.

o If the sense line detects a voltage, then the magnetic fidd is changing. and
hence the bit representedwasa 'one'” before the process started.

o If the sense line detects no voltage, then the magnetic fidd is not changing, and
the bit represented by the con was a“zero” before the process started.

To produce information nesded by a processor, these characterigtics are utilized
by cor e memoriesin the following fashion:

e Reed: TO read the valuestored in a bit. a current is sent through the drive
line of the core for thet bit Assume thet the current direction istha which
establishesa "'zero" in the core If ¢ new magnetic orientation agrees with
the established orientation. no change is made and t he sensed voltage is zero,
which corresporids to a"'zer0" bit. If there isachangein the magnetic orienta-
tion, then a nonzer o voltageis cregted on the sense line. which corresponds to a

Chap. 7: Memory Systems

"one" bit. In either case the bit representationof the magnetic flux a the end
of theread isa“zero.”

The overall effect is to destroy the data stored in the core, and so core
memories are destructive readout devices. This is generdly an unacceptable
feature, so the value read out is stored in a register and immediately retumned to
the core. For thisreason coresgeneraly haveT, =2 x T, sincethe datamust
be restored to the accessed location.

e Writee Thefirst step in the write sequenceis to place known data in all of the
cores that will be used for the write: this places a constant. known value in the
core. The vaue could be either a*'one"* or a “zero,” but we will assume that it
is a zero. This is not absolutely necessary, but is usualy combined with the
electronicsused for the read cycle: the first half of the read process above per-
forms this function. Current is then directed to the drive lines on those bits
which will have a"on€e™ orientation. while current is inhibited from the cores
for those hits that need to maintain a *'zero™ orientation. In this fashion, the
correct orientation is established for the data to be written to the core.

This technology was used for many years to create the main memory for
most computers. However, the cost and size of the memories, as well as their
speed, became a disadvantage as semiconductor memories were developed. Each
bit in the memory required a separate core, with at least two, but usualy three,
wires through it. The technique of storing information by the magnetic orienta-
tion of aferrous material is now used more prevalently for other types of storage
than for the central memory ot a computer. The magneuc orientation of a region
of ferrous materiad on a surface is used to store a hit. and this surface is most
often on a rotating magnetic disk, or on a magnetic tape. The reading of the
information still requires @ moving magnetic field, but in a disk or tape unit the
movement of the field is caused by physical movement between the surfaceand a
detecting element called a head. The head is also used to create the proper fields
for writing the information to the magnetic surface. Disk units are utilized to
store thousands of bytes, such as floppy disks on a persona computer, to billions
of byteson larger machines. Tapes have a similar range of storage abilities, and
are used on computersof all sizes.

Different types of electronic technologieshave been used to store informa-
tion in computers, from tubes to semiconductors. At one level we can examine
the storage mechanism by looking at the gate level; another level is the device
level. Figure 7.5 shows two different gating implementationsfor storing a single
bit These can be cascaded into severa bits to store bytesor words. One method
of maintaining a bit is to put it into a latch, as shown in Figure 7.5(a). The sim-
plest gating arrangement to store a hit is cross coupled gates, and these are shown
in the figure. The information placed in these gates is established by the input (D)
when the enable line (ENB) is asserted. As long as the enable line is asserted,
whatever information is on the data line will be passed to the storage element.
When the enable line is deasserted, the last value for the data will be retained.
This behavior is useful for many computer functions, and can be usad to store
information when nesded.

The latch behavioris ra the most prevalent mechanism used in storage ele-
ments in a processor. The gates shown in Figure 7.5(b) implement an edge-
triggered function, the behavior generally associated with a register. The mechan-
ism shown in the figure is used to capturet he value of the data (D) onthe rising
edge of the clock (CLK). Anayss of the gates implementing the latch is

Chap. 7: Memory Systerns 345

(a)

(b)

Figure75 Possble Arrangamentsof Gates for Soring a Single Bit. (a) Latch (Single
Bit). (b) Edge-Triggered Flip-Flop .

relatively straightforward. but the register function is very involved. However, in
both cases the data must be stable for some window of time around the active
edge of the clock (or enable). If this condition is not true, the unit can enter a
metastablecondition that will cause problemsin high speed systems.

The circuitry shown in Figure 7.5 requires many individual transistors or
other active devices to creste. Therefore. they are used in small numbers in
places where the storage requirementsare not extensive. Creating enough register
or latch type crrcutts n an integrated circunt 10 store a lot of information would
not be a good use ot slicon red estate. Two types of mechanisms for storing
information in semiconduction memories are shown in Figure 7.6. Figure 7.6(a)
shows an arrangement of parts that implementsa static memory cell. Asin the
case of the latch, there is cross coupling between the elements, and the device has
two stable states. The active action of the system makes 3ure that the value of the
cell remainsas set until an external event causesa changé. Thus, a value written
to this cell will be maintained until the power is logt, or until the contents is
changed by the writeaction. In this it differs from core memories, since it is not
a destructive readout mechanism.

Static memories generally have a smaller number of bits per package, and a
higher power consumption, than dynamic memories. The static mechanism of
Figure 7.6(a) requires sx trandstors in every cell; other static memory
configurations utilize fewer active elements. One of the tasks of memory
designers is to reduce the number of components needed in an individual storage
cell, since fewer elements means that each individua cell can be smaller and
require less power, which in wm leads to larger memories. The memories with
the largest capacities use not a static mechanism, but rather a dynamic mechan-
ism, as shown in Figure 7.6(b). Here the value of the hit is not determined by the
current flowing through one of two different paths, but rather the bit value is
determined by the amount of charge stored on a capacitor. The capacitor is
cregted with semiconductor technology, and is extremely small. The sensing of
the chargeis also very difficult, and handled by circuitry on the deviceitself. The
information is placed on the capacitor by opening an electronic gate and establish-
ing the proper charge level. Then, the gate is closed, and the charge maintained
on the node by electronically isolating it from surrounding influences. However,
the time which the charge can be reliably maintained in this manner is not long,

Chap. 7: Memory Systems

—emrrrmn————— Bit-lines

Word line
| vea

— = L |

— Ny yil L

| __{
CMOS Cell DRAM Cell
(a) (v)

Figure 76. Bit Storage Elements for Semiconductor Memaries (a) Static Memary Cell.
(b) Dyramic Memary Cell.

and so it must he re-established periodicaily. This is done by a"refresh cycle.
which detects the appropriate bit values and refreshes the hits. The length of time
between refresh cycles varies from memory to memory, but a common value is 8
msec: each row must be visited at least once every 8 msec. For this reason
dynamic memory controllers are designed to periodically access rows to assure
that the data is maintained in the memory cells.

The storage of the information in the cells is only a part of the memory
problem. The bits stored must be organized in a reasonable fashion to access the
information. The two most prevalent mechanismsare random access and serial
access. Asthe nameimplies, random access memoriesare organized suchthet the
information can be accessed in a random fashion. That is, each location hast he
same access penalty, Ty, and the order of access can be entirely random. The only
requirement is a mechanism to decode an address of a specificlocation, and adata
path such that any location accessed can providet he necessary information.

On the other hand, seria access mechanismsare organized such that the
data is written and accessed in a seria fashion. Thus, the T4 varies depending on
the location of the information in the memory, since the data must passa mechan-
ism for reading each bit. Examplesof serial access devicesinclude magnetic sur-
face systems, such as tgpe and disk, and serial semiconductor systems, such as
shift registersand charge coupled devices.

A simplified block diagram for the random access mechanism is shown in
Figure 7.7. Thesize of t he decoding mechanism is dependent uponthe size of the
array of memory elements; the number of bits in memories increases each year.
The mechanism usad to decode the address can be designed in a variety of ways.
The two most basic mechanisms are the one dimensional (1-D) and two dimen-
sona (2-D) decoding schemes. The I-D scheme accepts an N-bit address. and
uses an N to 2V decoder to identify one of 2¥ individua elements. The location
identified is then used in the reed or write operation. The 2-D scheme accepts the

Chap. 7: Memory Systems 47

Memory

Decoding
Mechanism

Address .

g

Memory

| Data Path

Figure77. Random Access Memary Blodk Diagram.

N-bit address and divides it into two groups, which we will call X and Y. Thus,
x+v =N These two groups of address lines control X to 2¥ and ¥ to 2*
decoders, which jointly specify asingle lement. Note that the memory cells used
with the 1-D arrangement need only have a single enable line, while the memory
cells used with the 2-D arangement need two enable lines. Thus. the I-D
arrangement has a simple cell and a more complicated decoding scheme, while
the 2-D arrangement has a dightly more complex cell, with less logic required in
the decoding mechanism. These methods are depicted in Figure 7.8, which shows
the addressing mechanism for an array of eight cellsin a 1-D decoding ge-
ment, and sixteen cells in a 2-D decoding arrangement. Mechanisms
manufacturersinteral to memories include both the |-D and 2-D methods, as well
as other variations of the schenes. Note that there is no reason to stop at two
dimensions. and higher mechanisms could be useful in some systems.

The basic ideas of the preceding paragraphs apply not only to individual
bits, but also to collections of bits That is, many memories are not organized as
1-bit entities, but rather some multiple that makes logical as well as manufactur-
ing sense. Memories containing Chit words are very useful for storing BCD
digits, and for use with 4-bit microprocessor systems. Memoriesorganized 8 bits
wide are useful for ASCII characters, 8-bit microprocessor systems, and byte-
addressable memory systems. Combinations of 4-bit and 8-bit systems can be
used as needed to meet other system needs. In dealing with the memories or
other storage elements, the principles used in identifyinga bit in a memory array
can be gpplied. That is the individual components can be organized in a one
dimensional fashion, a two dimensiona fashion, or in some combination of the
above schemes.

Example 7.1: |-D Design o a register set: Design a register array that con-
tains eight registers, and that operates with an 8-bit bus. The array should
have two control lines, aread line and a write line. Use individual registers
in the ALS technology, and aone dimensional addressing scheme. How fast
can information be made availableon a read? What is the data requirement
for a write?

Chap. 7: Memory System

‘skeny KIowdW a-g pue -1 ut paziuediQ s Kowd gL mByy

19p029
vo%.omo ssoippy g ¥

M9

%90
voe

Jepooeq
golE

WRITE-H

READ-L

ADRC2:0)-H

One solutionto thisis shown in Figure 79. The register selected here
is the 74ALS299, which hes inputs and outputson the sane pin. The inputs
not shown in the figure have been appmpriately disabled. With the enable
lines (Gt, G2) tied low, this device will output its information when the
function select lines (S1, 0) are both fow. When the function select lies
are both high, the outputsare disabled, and a value can be accepted from t he
bus to the interna register. The address is decoded by two 74ALS138s.
When the reed line is activated, the function select lines of the appmpriate
register are asserted. The delay from assertion of the read line to the output
data stable is the sum of the enable-to-output-stabledelay of the 74ALS138
and the function-select-to-data-stabledelay of the 74ALS299. The sum of
the maximum times is 39 nsec; typica times would be shorter. When the
write line is asserted, the clock line of the appropriate register is activated.
The loading of the register occurs on the low-to-high transition of the clock
at the register, which corresponds to the high-to-low transition of the clock
line in the figure, since there is a change of assertion level through the
74ALS138. The maximum delay through the 74ALS138 is 17 nsec. and the

EN7-L Y Iu
Decoder Y e
SIS | CKI-L Wl v i
ot " I [o 1AL5299
2; " O"""'cq;g:‘t‘ ENb-L Y E
— O - Y .
2 "o CK3-L CK6-L. 2 16(7:00
/1 | - —Qua_'ALS299
/o——ﬂ " CKi-L =
[— *cc CKC-C ENS-L Y {a
Y e
CKS-L Y i ax e
Decoder Qe TALS299
v [TASTIE] EWI-L L v
T ST 2 gn ¢
[ENS-L CK4-L v 1oen:0
—dw PTTEeT — P, 2
2 o L—Cua 'ALS299 3
[1] - — v e
=t EN2-L EN3-L] +
SR L o vy
/_0-—— = n b——-————ENo_L CK3-L b ax om0
" _—quw TALS299
L Y
CK2-L —1* e
¥ ox s
_L—Q o TALS299
L —Y(w
CK1-L oy e
YL ax g
_—qua YALS299
ENO-. [—Y-{u
CKO-L = 10610
v i ox '
_—quw 'ALS299

Figure 79 Regigerswith One Dimensond Addressing.

Chap. 7: Memory Sysems

data must be stable on the bus for 16 nsec prior to the rising edge of the
clock (at the register).

The arrangement of the pans as shown in the figure gives a register
bank with eight registersin ten DP packages, and a power consumption of
about 1.6 waits. This is not a very efficient use of the board space or sys-
tem power, but the unit can meet some requirements for special systems.

The use of individua registers as shown in Example 7.1 can be used to
meet some specia requirements, but the normal manner of operation is to use
memory elements that contain a larger storage capacity. Nevertheless, the same
principlesapply, and the memoriescan be organized in a one dimensiona or two
dimensiona manner.

Example 7.2: 64-Kbyte static RAM system: Design a memory system for an
8-bit microprocessor syssem. The memory system is to contain 64 Kbytes
of static RAM memory, using 8K x 8 RAMs, such as the uPD4464 from NEC
Electronics Inc. Do this design in two ways, first as a one dimensional
scheme, then as a two dimensional scheme. Communication lines to the
memory include the address and data buses, a write line and a reed line.
Write and reed linesar e asserted low.

The 4464 is an 8K x 8 RAM with thirteen address lines, two enable
lines, an output enable. and a write line. One of the enable lines is asserted
high. while the other is asserted low: the write line and the output enable are
both asserted low. To attan the 64K space. eight separate memories are
required. Figure 7.10 shows one o the possible 1-D organizationsthat can
be used. The lower address lines are shared by al memories; the current
requirements of each input isonly | pa, which does not causeloading prob-
lems. The upper three address lines are directed to a 3-to-8 decoder ('138),
which enablesonly one of the memory chips. This alows sharing of all of
the read and write lines. as only one memory element will be active at any
one time. The burden is on the user of the system to be sure that the
address linesdo not change while the write lineis asserted; such action will
cause the data to be corrupted in the memory.

Note that this arrangement can be extended to include more memories
by utilizing the unused enable lines of the 3-to-8 decoder. Tha is, addi-
tional decoders combined to make larger decoding systems (4-to-16; 5-to-
32 etc.) can be used to make larger 1-D memory systems.

The two dimensiona implementationis shown in Figure 7.11 Many
of the characteristics are identical: the reed and write lines are shared
between al of the memoaries; the 13 least significant address lines are com-
mon to al memories, and the data bus is used by al chips. However, two
2-to-4 line decoders ('139s) are used to implement the decodingof the most
significant address lines, instead of a single decoder. The use of the "139s
allowsfor doubling the size of the memory (not shown) without the addition
d more decoding capability. If the larger capability is not needed, then the
function of the second '139 can befilled by an inverter.

The systems shown in Figures 7.10 and 7.11 demonstrate the use of
decoders t0 nake one and two dimensional systems. However, certain
design criteria have not been considersd int he discussion that must be taken
into account in designing a specific system. For example. the time from
chip enable to output valid for the uPD4464 is twice the time required for

Chop.7: Memory Systems 351

Hl
TJa
r——— e €1
——i (1)
—Qee 8 x 8
auzn RAM
HI1
a
1
v o
—(Jo BK x 8
annn RAM
HI
Tla
€t
q v oo
—Cj® 8K x 8
p——iatizs RAM
HI
&2
Decoder e
ur 138 v LA
g ki ® BK x 8
@ »po—— anzo RAM
ga s m
= " p—— 2]
15 | 1] < S Q!
14 neH— q] 0o %
SELB b
13 " -J® 8K x 8 o
sia 2
0 O ————— et ALI2:0) RAM ol
HI — e
€2 / *
-G &l :
ju oo
o1 ® 8K x 8
ABDR{15:0)-H wze RAM
HI
s 5]
-~ €l
Qv [0
qu= 8 x 8
HI
2
WRITE-L N
READ-L ! e
[8K x 8
...... PAM
L]

Figure 7.10. 64-KbyteMemory Array fromsK x 8 Mnori es; 1-D
Organization.

output enableto output valid. If the oesd of the systemis critical. then a
different arrangement nay be desired, one in which t he chips are enabled al |
the time, and t he autput enable linesand wite lines activated as nesded to
perform reads and writes. This changes the configurationd the system,
since the read and wite lines can no longer be common to dl memory
chips, but the same basic concepts are ill applicabletot he nenory.

Chap. 7. Memory Systems

(ADDR(18) used only if system 1s~ger than 64KBytes)

ADDR{18) -H
ADDR (15) -H 1|
mani
1139 {Decoder
wnnmn
i
)
EN3-L de EN3-L .
—ju o e ® 1] une
——d= aKx8 _1 ——de 8K x8
—tpi2ie RAM ——ttuze RAM
E))
EN2-L da EN2-L _du
Yol D7:0) |rd ol 07:00 =y
—Q = 8K x 8 atid 8K x 8
139 o] toze AN f——tauze RAM
[
e ® L
ADDR(14)-H n a 2
N1 ENI-L
AR] | nb ML - gn —de
. w —Js 370} e —Qv D701 fad
e 8K x 8 e 8K x 8
= Decoder —! at12:00 RAM bt AC12:01 RAM
2
ENO-L P . ENO-L da
—q¥ BT ot = 37:00 —T
a* L] 8K x 8 ~Q 8K x 8
— RAM i At12:00 RAM
WRITE-L
READ-L
DATA(7:0)-H
ADDR(12:0)-H

Figure 7.11. 64-Kbyte Memory Array from 8K x 8 Memories; 2- DOrganization.

The conceptsinvolved with the address mechanisms are not limited to the

examples examined above. Consider the following example, in which dynamic
memories are usad to create a large random access memory. The addressing
mechanism for identifying the appropri ate memory module to activate is 1-D in
nature, while the actual memories involved ar e selected in a 2-D fashion.

Example 73 Dynamic memory system: Design a nenory to be used with
the time multiplexed address/data bus of t he N$32332 shown in Figure 6.10.
Theaddress will be suppliedon the busduring T1, along vith a data direc-
tion indication (DDIN). The memory should respond t o t he assertion of t he
address strobe(ADS'L) by initiating a memory request. If it isamite, the
dat a will become available during T3; if it isaread, t he data should besup
plied as soon as possible, but no later than the beginning o T4 e
dynamic memoriest o provide as large a nenory space as possible.

Chap. 7: Memory Systems 353

CAS

Address

Data:

To discuss a sysem with dynamic memories, firgt let us examine
some of the mechanismsaf dedling with the memories. There are a number
of device-specificcharacterigtics, but the besic cycle for aread in adynamic
RAM is shown in Figure 7.12(b). Usudly, large RAMs such as t he dynamic
RAMs shown here reguire SO many address lines that the address divided
into two parts and time multiplexed on asingleset of address lines These
two parts of the address are caled the "row address™ and the “column
address”" After the mw address is presented on the address lines for a
required period, the mw address strobe (RAS) is assarted The addressis
held for a shont time then changed to be the column address After a
required setup time, the column address srobe is asserted (CaAS), and the
memory access begins. Some time later, which is the access time of the
memory, the data becomes valid (To,z.). When the RAS is rdeasad (7).
the output data will return to the tri-state condition. A write requires the
same operation. but the write enable line is asserted during the operation,

Dynamic RAM Module
with 22N |ocations
—N7L- ADDRESS
—dwe
—QRas
—ddcas

——{Data h DaaQu

(a)

-

X Rbyv X Gol Y

2

Taas Teas Toata TReL
®)

Figure 7.12 Dynamic RAM (a) Sbd. (b) Timing f aRead Cycle.

Chap. 7: Memory Systems

and the data is asserted on the data lines by the module requesting the write
action. As long as the rows are accessed every Tegmesw the information
should be maintained. Thus, one of the design requirements is to access
each row within the refresh time, which in many memoriesis 8 msec.

These individual packages can be combined in reasonable ways to be
used in systems. For example. for bused systems the data in and data out
pins can be tied together and connected to the system bus with transceivers.
One commonly used configuration is to put nine individual memory
modules on asinglein line package (SIP), which is sufficient for a byte plus
parity. This SIP module is usad in this example; each SIP contains 256
Kbytes of information. SIP modules that contain 1 Mbyte and 4 Mbytes of
information are also available.

Using modules with 256 Kbytes, an 8-Mbyte memory can be con-
structed with just 32 modules. Drawings of the memory are contained in
Figure 7.13(a)-(c). A more complete set of drawings are found in Appen-
dix B. Figure 7.13(a) contains the memory elements themselves and the
data buffering transceivers. Note that the data lines are buffered from the
bus system with a transceiver. Although the data line of each memory
module does not present a large load, there are enough individual memory
modules in the system to provide a nontrivial load. The buffer (transceiver)
has the effect of isolating the loads from the bus and minimizing the effect
of the wires required to carry the signals. Also note that the organizationis
such that the 4 bytes required for a 32-bit word (assuming that the word is
aligned correctly) are dl accessed with the same RAS and CAS line

Accesses of information nor aligned on a word boundary must use the
proper set of lines, and this is the responsibility of the iniuator of the tran-
saction.

The generation of row and address strobesis done by drivers capable
of supplyinga sufficient amount of current, and these are represented in Fig-
ure7.13(b). The selection of the appropriate megabyte is accomplishedby a
decoder, which is a 1-D technique. The most significant address lines are
used to identify t he appropriate megabyte; expandingto a 16-Mbyte address
space would require an additional decoder. The decoding is done by a '538,
which is chosen for two reasons. The first is that the assertion level of the
output is selectable, so that the assertion level is selected to match the gates
that follow the decoder. In this case, the gates that follow are '801s which
were selected for their drive capability: each RAS and CAS line has 36 indi-
vidual memory modules attached to it (32 data, 4 parity). The second rea
son for the selection of the '538 is that, with the proper activation of the
contral signals. all of the outputs can be asserted simultaneously. This is
very ussful to allow dl 8 Mbytes to perform a refresh cycle at the same
time.

The address latches are aso included in Figure 7.13(b). The latches
accept the address during the first cycle of the transfer, and the addressis
then brokenintothree groups: nine bitsfor the row address, nine bits for the
column address, and the most significant bits for identification of the active
megabyte. The two least significant bitsare not included, since the system
is byte-addressable, and these bits merely identify the appropriate byte.
Since all 4 bytes are accessed on every cycle, the least significant address
lines are not needed here. The 9-bit row/column address bus (RC_BUS) is
then presented to four setsof high current drivers. which have the capability

Chop. 7: Memory Systems 355

CAS7-L
RAS7-L |
BAD B OV " T

CAse-L.
RASH-L |
BADBB: 01-A T

cAss-L
RASS~L |
BAC(8: 0)-H |

cAsd-L
RASA-L 1
BAC(B: 0)-H |

cAS3-L
RAS3-L ;
BAB(BI OV T

cAs2-L
RASZ-L]
BAB(B:OI-A |

cAs1-L

RASI-L {
BAA(8:0)-H

CASO-L

RASO-L

BAA(8:0)-H

——

DATA(31:28) -H l 3 DATA(23: m—u;l 3

e .

—- |
I -(0)3m

DATA(0:7)-H I t

DATA(15:8)-H H

Figure 7.13(a). 8-Mbyte Memory System: Memory Array and ta Buffeing
Trancevers

o providing the current needed by the collection of memories. The outputs
of the high current drivers are conditioned by damping networks to minim-
ize the undershoot and overshoot, which will occur when switchingt he lines
between high and low logic levels The address lines of the individua
memoriesare supplied from the damping networks by four separate sets of
lines (BAA-BAD). This buffering is required to provide sufficient drive
capability, since each address line (BRA(0)-H, for example) supplies the
address t0 72 separate nenory modules Also induded isthe mw counter
that identifies the appropriate address for refresh. These memories refresh
two mws simultaneoudly; 0 the 0 line is not involved int he count.

The control logic shown in Figure 7.13(c) coordinates the assertion of
al of the signdl lines. The coordinator of al of the work isa state machine

Chap. 7: Memory Systems

DATA(Z3: 20)-H AD(23:20)H 9
— I OO e L "z
ADDRESS-H c REFRESH-L B
]
ne L n Refresh l
= Row .
DATA(19:11)-H Courtter 541
———————— 0 "R
ADDRESS-H ¢ AF:N HRO YO
ROW-L
—rrrmree——(] ’ FRESH-L
* 83 REFRESHL v P> 1g.7 Driver
DATA(1022) -H {for § MSBs of
: | nine bit RC_BUS)
En e RC_BUS (8301 -H
ADDRESS-H .
M_Q © 1843 High
Current Damping
Address Drivers Network s
Latches Hen vl [Yo | D(8:01 -4
N T
.—W\g—_-
L9 sa2m =
BAC(8:0)-H
105 A] RO Yoo §
N ot
_MNI
L9' eaems =
BAB(8:0)-H
048:0) ¥18:01 080 Y10:9) ¢
N oyt
— W
L9 sz =
BAA(8:0) -H
[13 Yimo &0 Yino |
N T Address lines
L9 eaom = to mesory
= = groups
-
AD(23:0) 4 e 1) o
2 MEG6-H RASA-L
3 » “ » ———
21 MEGS-H RAS3-L
. ’ L 5 B O
20 MEGA-H RAS2-1
‘ " FEGIH " o
REFRESHH “ - MEGZH . :° RASO-L
MEM_CYCLE-H a " MEGL-H n
MEGO-H CAS7-L
Decoder " w TP thseL
(outputs o
asserted 0 -] :)—-—C:S—S.L
highl DORAS-H o 0_5_5_4_'L
D0_CAS-H ap xﬁ
= o @RSl
o
RAS and CAS -
drivers

Figure 7.13(b). 8-Mbyte Memory System: RAS and CAS Logic; Address Latches and

Drivers.

Chap. 7: Memory Systems

DDIN-L ‘
" q
ADDRESS-H w * OUT-H
as
N State
HI Machine REFRESH~L
i“ Synchronizing controller
L_ Register a REFRESH-H
3
vt E = " =g HEM_CYCLE-H
ADSL g5 0p- » n " - DO_RAS~H
— b ax D0_CAS-H
SYS_RESET-L —o— o =
= Qar 1175
FAST-CLKH @ ael3
Refresh svsRESET-L | @ COLLVNL
timer ResT MEMORY-CONTINUE-H
BUS_CLOCK-H a o
825105 gp— BUF ENBL-
REFRESH-H M S103 on ENBLL
DO_RAS-H " 84300

BE3-L

BE2-L

BE1-L

BEO~L

WRITE-L

Buffer Enable Gates

BE2-L

O\,

BE1-L

BEOL |
BUF_ENBL-L

—“LL———:{JO__ENﬁ

EN2-H

e

Write Enable Gates

High
Current Damping
Drivers Network
omen vme [T v |
N
IC 8 gazes v Wf&;

Figure 7.13(c). 8-Mbyte Memory System: Control L 0giC.

WE(3:0)-L

Wreite Enables;
one for each

byte group of
memor 1es

controller (825105), which has the responshility of asserting the signalsin
the order explained above. It is driven by aclock (PAST_CLK), which is
four times faster then the bus clock(BUS- CLOCK) and synchronized with it.
Thus, the bus clock and the fast clock are-generated externally and supplied
athe memory sysem. Using these two clocksin this manner allowst he
sgnalsto be created in atimely fashion. The refresh counter iS connected
tothe bus clock, which it cauts down to identify the proper time to do a
refresh. \When the refresh is needed, it sets an internal flag that providesan
input to the state machine; when the refresh iS recognized the flag isress.

Chap. 7: Memory Systems

The other inputs to the state machine are a flag to identify the start of a
memory cycle. and the signal TSO. which comes from the timing unit of the
microprocessor to identify the end of a cycle. The outputs of the state
machine are used to assert RAS. CAS. and the other signals associated with
the dynamic RAM. The signal MEMORY-CONTINUE is used to inform the
rest of the system that the memory information is ready. This is necessary
since the RAM may be in the middle of a refresh cycle when the system
makes a memory request.

The two sets of gates in Figure 7.13(c) are to assert the write enable
lines and the data transceiver enable lines at the appropriate time. The time
is identitied by the state machine controller. hut the appropriate byte is
identitied by the byte enable signals generated by the processor. This 7-D
mechanism chooses the appropriate bytes. One dimension s provided bv
the address: the second dimension 15 supplied by the processor. Thus. the
processor must assume the responsibility of reading and writing intormation
that 1y not aligned exactly on a 32-bit boundary.

A photograph of such a system 1s shown in Figure 7.13(dy. This ai-
tcm contains 8 Mbytes of memory and a 32032 system.

The concepts discussed in this section are applicable to a wtde range of
memory organizations and considerations. For moat processing done by general
purpose computers. random access s required to the memory. This is true of core
memornies, semiconductor memortes. and other technologies as wetl. Henee. the

mdividual clements imust be individualiy addressable and accessible throueh the

I

e

i

s Tl e o ' ! ! PP

N ' . Saiw m
e on .

1

SR
RUITHTTTY

S

Figure 7.13(d). 8-Mbyte Memory System: 32032 System with 8-Mbytes Dynamic RAM.

Chap. 7: Memory Systems 359

7.3.

Memory System

CPU Bmasmkzjaanuaankd

L [[[] ewsmmem

to other Modules

Figure 714. cpU with Four Bank Interleaved Menory System.

bus structure. The organization of the memory to access the addressed location
can bedoneina L-D, 2-D, or related fashion, as long as only one location is actu-
aly enabled.

Creating larger memories. or memories with differing characteristics, can be
accomplished by combinationsdf the mechanisms discussed here. For example,
one of the figures of merit for a memory system is bus bandwidth, represented in
bytes/sec. Since information can be transferred over a bus structure faster than it
can be retrieved from a large memory, one of the ways to increase the bandwidth
is to create memory in banks, and interleave the memory banksin time. Consider
the system shown in Figure 7.14. The memory requests are sent to all four banks.
and the responsesent to the processor in different timedots. If the bus widthis4
bytes, and the memory access time is 200 nsec, and if 4 bytes can be sent every
50 nsec, then all four banks can be kept busy (assumingthat there are sufficient
requests). But each bank is individually organized as a random access system.
and interfaces (v the bus system in @ manner which will alow the transters to
occur in a reasonable fashion. This requires more circuitry, but speeds up the
overall data rates.

The choice of a memory organization and the technology in which it is
implemented must reflect the constraintsof the entire system. The choiceswill be
based on optimizing performance for a given set of resources. If a major require-
ment is speed, then the designer can afford to put more resources (silicon real
estate, board space, power, etc.) in the memory to provide for a minimum
response time. I thecritical resource is power, such as a battery operated system.
then the complexity cannot be increased, and t he parts and design mechanisms ar e
optimized for minimal power consunption. Nevertheless, the system architect
can choose from a variety of memory and processor organizations to create a sys-
tem that will fit a particular need.

Virtual Memory Systems: The lllusion of a Memory Spoc\q

One of the principal tenets of stored program computers is that the program
resides in a memory space, and the instructionsare extracted frammemory and
executed. If the instructioncalls for data manipulation, then the data is identified
and utilized to perform whatever calculationsare called for by the instruction. In
nast programsthe data also residesin the memory, & leasta the beginning of the
program, when data is broughtinto the system, or at theend of the program, when
data is prepared for output to the destinationdevice. Thus, the program is loaded
into the memory, started, and whatever data manipulationsare called for by the
program are executed. The program then terminates, and t he system moveson to
execute the next program

Chop. 7: Memory Sysems

The statements made in the previous paragraph reflect some assumptions
often made about the use of the computer. Most machines used today have a col-
lection of system facilitiesthat we have come to call the operating system (OS).
The operating system has the responsibility of doing many things, among them
transferring programsand data to and from memory. When the program has been
loaded, the operating system starts execution of the program at sone predeter-
mined point. However, most usersof computer systemsdo not consider the effect
of what the OS is doing; rather, they have a''mode"* of what the machine is, and
they are operating under the assumption that the model is at least functionally
correct. Such a model may appear as shown in Figure 7.15.

In multiprogrammed systems, we know that other programs will aso be
utilizing the machine, but generally we think of the machineasours' at least for
the duration of our program. Knowing that a program will have a program sec-
tion and a data section. we often think of the machine as shown in Figure 7.16.
This simple block diagram shows only the memory and the processing capability.
The possible connection between the two is identified by the instruction set. and
using that instruction set we are able to perform work. where work is defined as
manipulatingdata. The machine as seen in Figure 7.16 is what we think we have:
hence, we call it a*vinual machine' In our mental model of the machine, the
program starts at location zero and executes through the instructions in order. In
the physical machine, the program was not loaded at location zero; rather, the
operating system placed the information at a location which. for some reason, was
available to be used. The operating system. then. is responsible for ascertaining
what pans of memory are available: if no memory is available. then the OS makes
some memory available. In a location known to the operaung system there is
kept a correspondence between the vinual space, which the program has the illu-
sion of controlling, and the physical space, which contains the actual information
being manipulated.

The mechanism used to define the relationship between the memory space
that the program thinks it is controlling, and the actual memory locations being
utilized, is called a "*virtual memory mapping.” The memory mapping mechanism

Moot

Disk System Tape Symem
CPU j¢+— oI‘/r(%ar
VO Data Path

Figure 7.15. Block Diagram d a"Modd" Computer.

Chap. 7: Memory Systermns 381

Memory

Main Program
————————y Subroutines
CPU
Global Data
(Registers) 1
(Arithmetic Units)

—

Stack

L |

Figure7.16. Uss Modd for a Computer and Program

is therefore responsible for convening an address issued by the program (the vir-
tua address) to an address that will be used by the memory system to access the
information (the rea address). Two common mechanisms often considered are
segmentation and paging. and some systems utilize both concepts in their imple-
mentation. [t 15 Not our intention to discuss the pros and cons of one mechanism
over another. That can he dedlt with more effectively in adiscussion of operating
systems themselves | BrHa73, PeSi83, Deit84. BiSh§8]. Rather. our interest is in the
low level operationsrequired to make virtual memory work.

Information is stored in real, physicad memory, and, as such, it must be
referenced with a valid memory address. However, within the executing program.
referencesare made by the program in any one of a number of different ways.
The addressing mechanism, be it a program counter reference, an indirect data
reference, Or any other method to specify a location in memory, identifies the tar-
get location in the virtual space of the program — where the program thinkst he
information is located. The memory mapping mechanism manipulates this (vir-
tual) address in such a way that the proper location in memory (the real address)
isaccessed.

One simple mechanism that can be used to alow multiple programs to
coexist in @ memory, each executing in its own address space, is depicted in Fig-
we7.17. In this case the operating system has placed the variou5prog>ams intoa
large memory, and it will keep arecord of the base address for each of the pro-
grams. In addition. it will keep arecord of the sections of memory not used, in
order to accommodateother programsas needed. Then when Program 2 isto be
executed, as in the figure, the OS will place the base addressof the program into
the base address register, S0 that all referencesmade by the CPU to memory are
made relative to the base location of the program. Thisis an example of register
relative addressing. except that all references to memory are made relative tot he
base register. In this way, the virtual address of the progran(the address the pro-
gram thinks it is using) is translated to a physical address, the actual location of
the information, by a simple addition. This mechanism will allow alarge memory
to be used by a system limited in some other way. For example, the instruction
St architecture of the PDP |1 family of computers limits the size of a single

Chap. 7. Memary Systems

Program
acce:

8808
mgr:ory with
address Pramicor
program space address m
address
Baw Address
of Program 1
CPU Program
Base Address
of Pmgram 2
Adderé'—
Base Address
of Program 3

[Base | | pase Address
L_Address l of Pmgram 4

OS sots base
address In
register

Flgure 717. MultiplePrograms in 2 Sngle Mamary.

processto 64 Kbytes, the amount of byte-addressablememory that can be reached
with a 16-hit address. Yet usngthe scheme depicted in Figure 7.17, severa such
programs can exist in a memoary that is much larger than 64 Kbytes. The opera-
ing system can sharethe resourcesdf the system between the programsin a rea-
sonable way. In this way, a multiprogrammed environmentcan be created, alow-
ing programsto share processor and 10 capabilitiesof the system.

The above scheme consders each program an indivisible block, and must
ded with the programs in that manner. However, an extension of the schemeis
to divide each program wnto logical segments, and load the segments into their
own sectionsof memory. This would correspond to the program modd shown in
Figure 7.16. Then, as the address was created by the system to access a particular
piece of information, the addressgenerated by the program would be offset by the
vauein the appropriate ssgment register, and the resulting address would be sent
tothe memary.

The above process can be visualized by considering a program which has
besn broken into segments, such as shown in Figure 718 The program
represented in the figure consists of four segments: a main program segment. a
subroutine Segment. a data ssgment consisting of reed only cta and adata seg-
ment with locationsthat can be both resd and modified For this system, the pro-
cessor will generate addresses consisting of a segment number and an offset
within that ssgment. The memory management mechanism must then transiate

Chap. 7: Memory Syst ens 343

Physical Address
Space

Virtual Address 1168
Space / Segment 1:
Subroutines
0,0
Segment 0: / 126¢
Main Program
0,154 1310
0.18C Segment 0:
10 Main Program
Segment 1: 1464
Subroutines / .
1,104 / 149¢
20 -
Segment 2: \\
A Sd only 1534
ata
Segment 2:
2168 Read Only
10 Data
Segment 3: . 16%¢ . Unused
Read/Write «— Memory
Data AN .
1838
3,20C
Segment 3:
Read/Write
Data
1A44
Program Segment Table
Segment Length Address Access
0 i90 1310 Read. Execute
1 108 1168 Read, Execute
2 16C 1534 Read
3 210 1838 Read. Write

Figure 7.18. Virtual Address Mechanism with Segmentation.

this intothe proper reel address. The real address, ADDRggay, can D represented
as the sum of the base of the ssgment and the offset Virthin t he segment:

ADDRggar, = ADDRsgovent pAse + ADDRsgGMENT OFFSET

Chap. 7: Memory Systems

Thus the cregtion of the correct address in the system involves identifying the
correct segment base and adding to it the segment offset. Part of the addressing
mechanism is then to consult the program segment table (PST) for each access:
the segment number identifiesthe element of the PST that refersto the desired
segment and using that information, generates the correct physica address. The
example shown in Figure 7.18 indicates that address 154 in the main program
segment is convened to physical address 1464. The hardware of the sysem
should make this conversion as quickly as posshle and a the sane tire check
the legdlity of the reference. That is, does the address exceed the length of the
segment? Or isthe referencea write request into aread only segment? A number
of systems indude segmentation capability in the processor. the mogt pralific of
which isthe 80x86 family of microprocessors. Figure 7.19 gives a register level
diagram of the microprocessor. in which the segment registers play a prominent
pat. Notethat the segment descriptor registers work in conjunction with t he vir-
tud address generation hardwdare, and that jointly they can generatethe required
address. Thus, the mechanisms discussed are built into the hardware of the sys-
tem.

If a virtual memory system is implemented by using segments, then the OS
has the responsihility of maintaining the ssgments, and loading the segment regis-
ters with the addressesfor the currently executing program. If another program is

Virtual Address Genaration

Segment,
DSegmem L Paging
User Accessible Registers ;:g;gg Har:’\:vdare
) Page Address
Segment Register C | Table Bus
Segment Register S | Control
Segment Register O
Segment Register € Address Bus 32 Bit
Segment Register F Address
Segment Register G
Data Bus 32 Bit
General Register A >
[Generai Regsier 8
General Register C
General Register User Arithmetic
2 Registers 1, Elements: Instruction
General Register Si Adder, Buffer
= Mult., and
Decoder

Figure 719. Block Diagram of s 80386 Processor.

Chap. 7. Memory Sydans 368

needed, then all of the segment registers are changed appropriately. Note that this
does not exclude the operating system from using the same physical segment for
more than one pmgram. For example, the pmgram section of an editor may be
needed by several users, and the operatingsystem can be aware of this and set up
the segment registersaccordingly.

One of the mechanisms aluded to but not actually described has to do with
the location of the programs when they are not in the memory executing. The
secondary storage medium is used to hold the programs, or portions of the pro-
grams, until they are needed. This secondary storage is usudly disk, but could be
any storage area large enough to hold the entire pmgram, or collection of pmgram
segments. One of the tasksof theOS is to control the use of the memory; that is,
the programs or program segments that residein the memory at any given timeis
determined by the OS. If a segment is needed during the execution of a program,
and that segment is not in memory, then the OS brings in the information from
secondary memory. In the process of doing so, it may be necessary for another
segment. which is not currently active. to be returned to secondary storage. In
this way the OS brings into memory the active programs and data, and those that
are not currently active will migrate out of main store as the programs currently
running need more memory space.

A segment is a logical entity, such as a pmgram segment or data segment.
There is no inherent size of such an entity, so there is no standard size of seg-
ments involved in a computer sysem. Thus, the operating system must keep
track of the starting address of the segment, its length. and other information that
deals with aceess privileges. This information is shown as pat ot the program
segment table i Figure 7.18. One ut the protectton wssues to be addressed i a
system s the containment of programs. a program must not be able to access
memory, except as that specific privilege has been granted to the program. As a
program requests information in a segment, the OS must make sure that the pro-
gram should have access to that segment. When accessing the information in a
segment, the program should be prevented from addressing information beyond
the length of the segment. One way to enforce this is to include in the system
bounds checking capabilities that compare the requested address against a given
maximum. This will dlow the system to protect the segments against unauthor-
ized access.

Example 7.4: Memory mapping with segments: Give a block diagram level
representation of an address trandation mechanism involving segments.
The address supplied by the processor consists of two values, the segment
number and the offset within the segnent. If an out of bounds request is
made, the unit should issue an interrupt. The mechanism should be capable
of keeping track of 16 programs, each capableof accessing 16 segments.

A block diagram of one solution to this problem is shown in Figure
720. The hardware logicaly sits between the generation of the addresses
and the actual memory. The addresses are generated in pairs, consisting of
a segment number and an offset within the segment. Before the program
can run, the OS loads the appropriate segments into the actual memory, then
sets up the addr esses and lengths in the twe memories shown in the figure.
Then the OS sets the correct pattem in the Program 1D register and initiates
the program. The addresstobe usad for t he information access in the actual
memory is obtained by adding the base address of the segment to the
address within the segment. However, the address within the segment is

Chop. 7: Memory Systems

Address 4 Bit ment
within ldemef

ment
Address Bus Segment %

<N /
TR o] —
ID Redider | | l
T 48its 4 Bits 4Bits 4Bits
Addr Addr Addr Addr
256 x 32 Maray 256 x 32 Memory
H’ogam‘edvo 5
Intertace 10 Al Sgmat Szes Sgmat Addresses
- Hogam 1D Reg
: g Dea Dea
Addresss
| B ———
@ @ Memory
, Addes
Out of Bounds e
“Reat
Physical
Address Data
Deda Bus ‘

Figure 7.20. Hardware for Address Trandation with Segments

also directed to a comparator that checks the addressagainst a maximum. If
the addressiis too large. then the out of bounds signal will be assarted, and
the system will be informed of the problem. The 256 locations in the seg-
ment szes and segment addresses memories alow up to 16 different pro-
grans to reside in memory a the sane time, and switching between them is
accomplished by placing a different pattern in the program ID register. Note .
that some data paths are nat shown, such as the path from the data bus to
the segment information memories Note also that the memoriesare 32 bits
wide, which would alow for alignmenton any byte boundary (for a system
with 32 address lines). Since most memories are organized (at lesst) 4
bytes wide, these memories could be 28 hits wide, with the understanding
that al ssgmentsmust be aligned on a doubleword boundary.

As demondrated by the preceding example, the virtual to real trandationis
not free, sone time is required to generate the real addressfrom the information
supplied by the processor. The times involved are the time to access the segment
addresses and segment sizes information, and the time to add that information to
the addresswithin the segment This overhead isimposed on all references to vir-
tua memory in thisscheme. In additiontot he overhead on a per reference hesis,

Chap.7: Memory Systems 367

there is also the overhead of managing the memory space. allocating segmentsin
the available space, collecting the empty space, and soon. All of these operations
add to the overhead of the system, and lead to a discussion of different approaches
to memory address mechanisms.

Another mechanism for mapping virtual addresses to physical addressis to
divide the original program and data space into pieces basad not on logical boun-
daries but rather physical boundaries. Thus the program model shown in figure
7.16 can be modified as shown in Figure 7.21. The pages have the characteristic
that they all have exactly the same size, as compared with the segments men-
tioned above, where the sizeis not a standard vaue. This organizationallows for
the individual elements (in this case pages) to fit in any location in a page frame,
since al pages have exactly the same size. The pagesall begin on a page boun-
dary. The process of addressgeneration is basically the same as that for segmen-
tation:

ADDRggaL = ADDRpage Base + ADDRpaGE OFFSET

The principal differenceis that the addition called for in the above equation is a
concatenation, not a full addition. That is, since the pages are forced to begin on
page boundaries, the least significant address bits (for the first location of a page)
are al zero. The address bits that identify the location within the page will not
extend into the nonzero bits of the address for the page boundary. Hence. no
addition time s required.

The difference between the paging scheme and the segmentatnon hcheme
presented above can be visudized by a different view of the program of Figure
718, The addressing scheme is modified to a paging scheme as shown in Figure
7.22. Asfar as the program is concemned, the only differenceis that the accesses
are made by specifying the page number and offset within the page, not the seg-
ment number and offset within the segment. As before, the correlation between
the virtual and physical addressescan be represented in tabular form, shown inthe
figurs as the pagetable. Asshown in the figure, the instruction located at location
344 of page 2 has a physical address of 2F44, Notethd the addition is merely a

Memory
[— Main Program |
I Subroutines ;
CPU
Global Data
(Registers)
{Arithmetic Units)
Pages
— ———1

Figure 721. User Modd far a Computer and Program, Using Pages.

Chap. 7: Memory Systems

Physical Address
Space

Virtual Address
Space
ol Maln |
1 Program
2
2043
4
5 | Subroutines
6
8 | ..Bead.Only...
9 Data
A
B
C |..Read/Write..
D Data
E
F
Page Table
Page Address Access
0 2800 Read, Execute
1 1800 Read. Execute
2 2C00 Read. Execute
3 6000 Read. Execute
4 Not in Memory Read. Execute
5 1400 Read, Execute
6 2000 Read. Execute
7 3C00 Read, Execute
8 4000 Read
9 Not in Memory Read
A 3400 Read
8 4400 Reed
c 5400 Read/Write
D Not in Memory Read/Write
E Not in Menory Read/Write
F Not in Merory Read/Write

F gure 7.22. Virtual Address Mechanism with Paging.

Chap. 7: Memory Systems

1400
1800
1C00

369

370

concatenation, since 2C00 + 344 does not have any nonzero overlap (0010 1100
0000 0000 + 001! 01000100=0010 1111 0100 0100).

The 08 burden changesunder this scheme, since the question asked is not if
a page will fit, but rather, where should the page be placed. This decision is a
function of the method utilized by the operating system to maintain the memory
space in the machine, and how much information is dealt with with each page
operation. Some systems bring in only those immediately requested by the pro-
gram. Other systems load into memory not only the requested page, but some
surrounding pages as well. For a discussion of the various decisions and their
impact on overall system performancesee [PeSi83, Deit84, BiSh88].

Pages are generally much smaller than segments, ranging from 256 bytes to
1.024 bytes or more. Since the page size is smaller than a segment size, there
will be, in general. many pagesin a system. Thus, the table of entries cannot be
limited to 16. However, the overal organization of the memory mapping scheme
will be very similar. Consider the following example that proposes some
hardwareto provide a virtua addressto red addresstrandation.

Example 7.5: Memory mapping with pages: Desgn a virtual memory
mapper that uses pages of 512 bytes The page table must be capable of
supporting 2,048 pages. The mechanism should function as indicated by
Figure7.22. What is the speed of the address trandation mechanism?

One solution to the stated problem is shown in Figure 7.23. The
address received from the processor is dedt with in two sections: the page
identifier and the offset within the page. Thus. with 512 bytes per page. the
9 least significant bits (ADDRESS(8:(0-H) are used to identity the location
within the page. and the remaining bits of the address are used to specify
the appropriatepage. Also note that with 2,048 pages. each with 512 bytes,
the addressable memory is only a megabyte. This is not a large enough
memory space for genera usage, but will be large enough for some applica-
tions. The stated requirement of 2,048 pages necessitates | | bits of address
to identify the appropriate page. The width of the page table memory for

. thisdesignis 17 bits, which allows 15 bits of addressand 2 bits to indicate
" the status of the addressed page. One hit is used to indicateif the addressed
page is in main store or not; the other bit is used to identify whether the
page has been modified since it was loaded. If the page has not been
modified, then, when the time arrives for it to be removed to make room for

a new page, the old page need not be returned to the mass storage device.

Three basic modes of operation of the mechanism are shown. In one
mode the page table can be filled with information. In this mode, the
address of the page table is provided by the PIO_DATA path, and data can
be loaded into the table with the chip select (CS) and write enable (WE)
lines from the control logic. The information to place in the page table is
loaded from the data bus, via the transceiver. The second mode of opera-
tion is norma behavior for the system. In this mode, the 9 least significant
lines of the address are obtained directly from the address bus. Since there
are 24 address lines total, the remaining 15 lines must come from the page
table. The applicable location of the page table is identified by the 11
address lines of higher significancethan the lines that identify the location
of the address within the page (ADDRESS(19:9)). These lines are fed to the
address of the page table, and also the output enable (OE) is assarted.
Under these conditions. the page table will output the base addressof the

Chap. 7: Memory Systems

¥4+

ADDRESS(19:9)-H

Address path for
normal operation

ADR_ENBL-L

PIO_DATA(10:0)-H ‘ AS

Address used to load

R 1 _____ Page Table from
ADR_ENBL-L PIO_ENBL-L DataBus
PIO_ENBL-L Tri-state Address
Pmir:'!nbm%rllo Oo——— Drivers to supply
Manaq!ng WE-L address to memory
Page Table D Page Table system. Drivers for
b cst | e o S e
Page Mapping | OF 2048 x 17 ADDRESS(23:0)-H = mapping.
DATA UNMAPPED-L
- l I Drivers for address
—-—MR H 15/ ‘AS from page table.
/ ADR_ENBLL | MEM_ADR(23:0)-H
PIO_DIR-H
o :jENBL —d_24 ADDRESS(B:0)H |.,o
- ADR_ENBL-L | 54| «—_ Drivers for least
- —a significani address
Bt.r-:rll'sciever : lines
DATARBLIS I

Figure 7.23. Block Diagram of Logic for Paged Memory Address Translation.

372

selected page, which will then be concatenated with the 9 least significant
linesto form the physical address of the desired virtual location.

The third mode of operation is for addressesthat do not need virtual-
to-red trandation. This could be usd, for example, by the OS when it
interrogates tables @ known physical locations in memory, or activates
memory mapped /0.

Not shown in the logic diagram is any method for keeping track of the
order of useof the pages When a new page needs to be loaded into main
store, @ number of agorithms may be usd to identify the page to be
replaced. The agorithm that feels mogt intuitively correct is to replace the
least recently used page. But the hardware required to keep track of the
pages in the order of ther use is nontrivial and not shown. Other ago-
rithms are also available that optimize the behavior of the system under
specific circumstances([PeSi83, Deit84, BiSh88].

As stated earlier, the addition process is one of concatenating the bits
in the proper order. and no red addition is required. Thus the time required
for the circuit shown in Figure 7.23 is the sum of the delay times in the
respectiveelements:

TrraNsLATE = Tsar + Tyem + Tsay

=2 X Tsq) + Tvem

For 74AS541s and 30 nsec memory. this totals about 42 nsec.

The paging scheme has many advantages that make it very attractive for
systems. Since all pages are the same size, any page can be placed in any page
frame in memory. The system is able to more effectively utilize al space, and
memory does not tend to fragment as it does in systems utilizing segmentation
only. The creation of the address utilizes a concatenation process. which saves
time over a system that requires an addition. Nevertheless, some problems need
to be addressed in reai sysems. One of the problemsis illustrated by the preced-
ing example. Even with a page table memory of 2048 entries, the maximum size
of the memory availableto a programin this system is 2048 x 512 = { Mbyte.
Since the amount of space usad by programshas increased drastically as the rela-
tive cost of memory has decreased, this is not large enough for most programs.
The 24-bit address space provided by many processors allows for 16 Mbytes of
memory, and this is not enough for many programs today. In a simple program
usd in a university environment for some research problems, the virtuat memory
space needed by the system exceeded 50 Mbytes. Thus, it is necessary to provide
a sufficiently large page table to alow programs to grow to the necessary size.

Any limit on the number of pages that can be accessed by a program will
eventudly limit the usability of the system. Thus, the approach suggested by
Example 7.5 is not sufficient, and the system needs to be modified to dlow a
larger page capability. This can be accomplished by keeping the page table. not
in hardware, but in the memory of the system itself. However, if all accesses
needed to obtain page addresses by going to main store, the performance penaty
would be very large. One solution is to keep in hardware not all of t he page table
entries, but rather the most active page entries. In this manner the hardware
requirementscan be reduced, and still maintain critical page information to speed
upthe processing.

Chap. 7: Memory Systems

This is the approach taken in the N§32082, which is the memory manage-
ment unit (MMU) for the NS32000 processor series. A block diagram of the
NS32082 is given in Figure 7.24. This unit has been designed to work in conjunc-
tion with the time multiplexed bus of the NS32000 series processors, an example
of which is givenin Figure 610. When the processor generatesthe ADS signal,
the MMU accepts the addressand examines a 32 entry page table to see if it isan
active pdge. If the match is successful, then the correct physical address is made
available in the next bus cycle, and the bus transactions continue as expected.
Thus, the overall effect of the virtual to red translations carriedon by the MMU is
to add one additiona cycle to the four cycles needed for a bus transfer. This
increases by 25% the time required to fetch information fmm memory. Studies
indicate that for most progr ans the needed page information will immediately be
found in the 32 element page table for around 98% of all accesses. When the
address provided by the processor does not match one of the enmes in the
hardware page table, this does not meen that the page is not in memory. Rather,
the information must be sought from the red page table. which is kept in main
store. The NS32082 automatically generates memory requests to fetch this infor-
mation from main store, whereupon it updatesits hardware page table and contin-
ues the interrupted processing. This should occur for about 2% of the memory
requests. A system block diagram of a N§32032 CPU with a N§32082 MMU and
other support chipsis shown in Figure 7.25. Note that the ADS signal is directed
only to the MMU. which then creates the correct physical addressand assertsPAV,
physical address valid.

Like segmentaton, the paging mechanism aliows the system to create a
*“virtual” memory, which is the appearanceof a memory spaceas it is accessed by
a program. This alows the program to access more memory than is resident in
the computer, since nonactive poruons of the information are maintained on

Internal YO Control Bus

SYSTEM_BUS Det !
Aids EI|O
o
Buffers
and
Control T Buffer
CONTROL_LINES Block
(Cache)

Figure 724, Block D | i o N$32082 Memory Management Unit.

Chap. 7: Memory Systems 3z

‘Jiup) WowaBewely 1oy TROTESN UM WISAS ZEOTESN “ST'L amdy

H-(0:£)SNLVLS
-0 WILNI ~ ¢ o
V3903 MONIOV TI0H - eyeg pue SS3Uppy - Sng
—— [LHI]
e L] wmie @ paxaldiat 118 2E "
H-(0:1£19100 x® ol ' } * Y H An
[lezn A g
tmuw 11 w 583l (83
- v 2 & wmp————Qunn g8 ge
L s i s b s nd3
" wa{—] w 18028
SJIAITISURIY a aw p——————=—CQ WH
(2L wp—————— o
ndd FEd
e
I = woyy wp————Q 200 O syndut
- sz 14 Y e — L] ydnasaug
te iy
H-(0:£2) 80V e T L - TN
- ™ ——q wnia mp— FINI
saypye] pifla- wo P FE 3
SS3JppY > A_‘ i
I
: -G0H
o @
s} (80110 DS
T-(03£) 1ANI 31A8
i)
Jaxafdiying
ajqeul a)Ag ﬁ
Q < £
30 ko -
. - 8 T]
T-EU1S Qv - J1un toJdjuo] pue Burer) T1-13SR SAS
EWTTCETI loczt SINANT SNINIL

374

secondary storage. However, this is not the only application of the concept of
paging. A number of instruction sets can access a limited range of memory, and
paging can be used effectively in these systems as well. For example, the 8080
system has been used for many years, and it has an addressable range of 64
Kbytes. The same can be said for the PDP 11 architecture or the T19900. How-
ever, with newer memories we can get 256 Kbytesto 1 Mbyte or morein asingle
SIP, which isfar more that a single program can address. One way to effectively
utilize the memory is a multiprogramming environment. In this fashion, each of
the programs can have its own portions of memory, and accesses can be made
with the paging mechanisms explained above.

The use of paging to effectively utilize a large memory for systems that
limit the memory addressable by a single program allows severa programs to
residesimultaneoudly in a memory. Then. as the addressesare created by the pro-
gram, a trandation is performed m access the proper page. Texas Instruments.
Inc.. manufacturesan LST device used to perform the mapping for the case a large
memory and a small inherent address capability. The block diagram o the dev-
ice. which is the 74LS612, is shown in Figure 7.26(a). The assumption made by
system designers utilizing this device is that the address space is broken into
pages of 4,096 bytes. Thus, the 12 LSBs of the address are not touched by the
paging mechanism. The 4 MSBs of the address are used to identify one of 16
locationsof a page table memory inside the device. Each of these locations con-
tains 12 bits. which identify one of 4.096 pages in the red memory space. With
this device mapping can be implemented to a reai memory space of 16 Mbytes.

The operating system is responsible for loading the proper page addresses
into the page table. which it does by using the programmed I/0 instructionsand
addressing the appropriate register with the RS lines. Once the system has
prepared the table, the processor can access up to 16 pages by mapping the
addresses into the real memory system. That way, 16 complete programs could
reside in a I Mbyte memory, and be accessed through the 74LS612. A diagram
showing its Use with an 6800 system is given in Figure 7.26(b). Logicaly, the
device resides between the processor and the memory. And the operation of the
system creates a virtual spacethat is smaller then the physical space available, and
yet uses the concepts presented above.

The use of virmal memory techniques alow effective use of the real
memory, whether the available memory is larger or smaller than that needed by a
specific program. The program operates under theillusion that it has accessto its
own memory, independent of other events that may occur in the syssem. With
large processor systems, this results in the use of less real memory than called for
by a single program. The use of a large memory with processors that cannot
access al of the available storage results in systems that can load several com-
plete programs into the available physical memory. But the basic reason that the
systemsar e effectivecomes from the observed behavior of programsin execution.

Programs generaly exhibit locality when they are running. That is, at any
given time, or during a short period, a program will tend to use information in a
small number of locales. While a program is executing a loop, the instruction
fetches are confined to the memory area where the loop is located. The loop may
access an array, axl whilet he array accessesare going on, the data referencesare
limited tothe area wherethe array islocated. But the net result is that the amount
of memory needed by a program during any small period will not be the entire
addressablespace, but rather a portion of it Thus, a pmgram may require a small
number of all of its pages during any particular time dlice. This behavior allows

Chop. 7: Memory Systems 375

376

MA(3:0) and 8 bit of 0s

B
30 L
WD wux |—| _ [ADDRESS-0UT
30) | Mux ADR D OUT E
18112 R
—
o RN

—_—
BUFFER

DATA(11:0) 1
(@)
6800 Address
ADR 22
Programmed 110
Control Logic
24 Bit Address
4 MSBs
8800 N MA 74,5612
System o ADR| 12 Bit8
ouT Physical
RS - 12 uses [ADR premory
/ DATA)
4 LSBs
8800 Address DATA
'646 ‘6468
Butfer Bufter
DATA I I DATA BUS
®

Figure 7.26. Memory Mapper for Small Virtuai Space to Large Physical Space. (a) Block
Diagram of 74L5612.(h) System Incorporating the 74LS612.

the virtual memory systems t 0 be effective. The migrating action d pages in and

out of main store keeps in memory the parts of t he program which are needed.
The dement nat discussed t o this paint is the secondary storage. In general,

the secondary Sorage mechanisms will be disks, although other mediums are

Chap. 7: Memory Systems

possible. The virtual memory system must work with the secondary storage ele-
ment and the main store to coordinate the transfer of information between the two.
The interface mechanism will be a data transfer protocol as was discussed in
Chapter 6. the controllers an activated by the processor and perform whatever
tasks they an given, moving information from the secondary storage areato main
store. The CB is responsible for requesting these transfersin a reasonable fashion.
and maintaining page tables as needed to reflect the contents of system memory.
The more pages that exist in main store, the greater the probability that a program
will find the information that it needs. Nevertheless, eventually the program wilt
access information on a page not in main store. The virtual address translation
mechanism recognizes a request for data that is not in main store and interrupts
the processor. The G5 then must deal with the program in a reasonable way.
Most often, the program is temporarily halted and the system requests that the
unavailableinformation be brought into memory. Meanwhile, the current state of
the program is saved, and the information for another program is loaded into the
registersof the CPU. The system can then continue execution on another program
while awaiting the arriva of data from secondary storage.

Example 7.6: Secondary storage access: Consider the block diagram for a
virtual memory system as shown in Figure 7.27. As long as the processoris
requesting information from main store, the system will continue executing.
When the processor detects a page fault. the G8 will need to bring in the
appropriate page. On the average. how much time will transpire before the
requested information is brought into man store? Assume that the access
time to main store 1s 250 nsec. Also assume that the disk rotates at 3600
RPM. that there are 48 sectors per track, and that a sector and a page have
the samesize — 512 bytes.

The time required for the transfer will break down into three different
times:

e Theseek time for the disk, which is thetimefor thedisktofind t he desired
track.

e The rotationd latency, which is the time for the disk to rotate until the
desired sector is under t he read head.

o Thetransfer time, whichistheactual timetotransfer the information tot he
memory.

Thus the time will be

Taccess = Tseex + TroT_LAT + TTRANSFER

Processor Main Store Disk System
Interface
I l 1
Processor Bus

Figure 737. Srpified Block D agramof Memory Sstem

Chap. 7: Memory Systems 377

The seek timeis a characteristic of t he individual disk being used. The time
to seek to the next track is much smaller than the time to seek to a distant
track, but an reasonable time is approximately 20 msec. The rotational
latency, on the average, will be half the time for one revolution. At 3,600
RPM, the disk makes 60 revolutions per second, or one every 16.67 msec.
and haf of that is 83 msec. Since there are 48 sectors per trak the
minimum transfer time is 1/48 of a revolution time, or about 347 gsec.
Thus, the timefor the transfer is dwarfed by the other timesinvolved. So,

Taccess = Tseek + Tror_LaT + TTRANSFER
=20 msec t 83 msec+0.347 msec
=28.647 msec

Note that we have not included in this figure al of the times involved. since
some time will be required by the processor to identify the appropriate page
and issue the request to have the page transferred to main store. This time
is not negligible, and should be accounted for in identifying the detailed
costs of the transaction.

Some observations can be made a this point regarding the relative
times of the transactions. One interesting piece of information is the ratio
of the accesstime of the disk to the access time of the main store, which we
Will call Ry, since this is the storage ratio nvolved with virtuat memory.
Thus.

Taccess

Rym =
T‘mm STORE
28.647 msec
250 nsec

= 114,500

Thisindicates that over 110,000 transferscould take place whilethe disk is
accessing the information not in memory. Another observation is that, dur-
ing that period of time a 2 MIP machine (a machine capable of 2 million
instructions per second) could execute almost 60,000 instructions. Since a
significant amount of work can be done in the time required to obtain the
information from secondary storage, an operating system will suspend the
process that incurred the page fault, and allow ancther processto utilize the
computational resourcesof the system.

Another observation is that the principal time involved in Tyccess IS
the seek time. Thus, systems that strive for high speed can benefit froma
device that does not need a physical seek to obtain the information. Two
such devices are druns and head-per-track disks. These devices have a
much higher cost per bit for storage. but can be used if the circumstances
warrant,

As we have seen, virtual memory can be used to more effectively utilizethe
resources availableto a system, and in particular to use memory in an effi caci o

378 Chap. 7: Memory Sams

7.4.

manner. Segmentation approaches the task by accessing information in logical
units, such as programs, subroutines, and data areas. Note also that a system can
organize the information that it needs to access as segments, o that individual
data entities can be organized as individual segments. Paging accesses informa-
tion by organizing information into pages, using a standard physical unit as the
common denominator in all transactions. Both concepts alow the program to
divorce itself from the placement of the information in physica memory, and
dlow the instructions to identify the location of information within a virtual
memory framework. It is not necessary to use only one or the other method, and
some systems combine the two together to form a paged system that also under-
stands segments. This type of an addressing scheme allows the creation of seg-
ments, which have unique characteristics, and the further benefits of paging,
which allows a regular placement policy.

Cache Memory: Speed-Up for Main Store

Cache memoriesare (relatively) small. high-speed memories inserted into the sys-
tem between the processor and the main store. The purpose of cache memory is
to speed up the processing rate by allowing the processor to execute a a higher
rate than that possible by usng man store adone. It utilizes many of the same
concepts used with virtual memories. but in a dlightly different fashion. One of
the hirst machines to utilize this mechanism was the 18M 360/85 {Liptog], but the
concept has become widety implemented in machines of al sues. Before .« cache
system is implemented, a thorough study of the behavior of the memory system
under expected operating conditions must be conducted. In this section we will
study some of the mechanisms utilized by cache systems, and determine their
effectivenessin different conditions. For a relatively complete discussion of a
number of the techniquesand their relative merits, see (Simt82].

The virtua memory mechanisms discussed in the previous section allow
programs to execute using a virtual memory space, a space that appears different
to a program then the actual space being utilized. The program need not have a
correct understanding of the amount of memory actually available. Programs can
run using very large virtua spaces with a relatively small actud main store. or t he
program can, by its inherent instruction and reference limitations, access only a
portion of the actual memory available. In either case, systemsthat utilize virtual
memory tend to have only portions of the pmgram loaded into main store at any
one time. These portions are sometimes referred to as the active portions of the
pmgrams, and during the execution of a program the active portions will change.

Oneeffect of the use of virtual memory techniquesis that the apparent pro-
cessing speed of the system is higher, because the CPU is more effectively utilized
by a number of programs, and the amount of time that the CPU isidleis minim-
ized. Of course, one exception to this speed enhancement will occur when the
processing being done is limited not by the processor, but rather by the VO capa-
bilities of the system. That is, a set of 1’0 bound jobs will not experiencethe
speedup improvements that would be seen by a mixture of /0 intensiveand com
pute intensive programs. Nevertheless, the system benefits from having only the
active portionsof t he programsreside inthe main store at any one time.

Cache memories operate on the same basic principa: kegp in the memory
(in this casethe cache) only those portions of t he information needed and active.
In this manner, the cache and the virtwual memory mechanisms are similar.

Chap. 7: Memory Systems 379

However, therear e some mgor diirences between the virtual nenory and cache
memory implementations. The two most obvious differencesare the visbility of
the mechanismand t he ratio of accesstimes.

A virtual memory system has high visibility to a program and to the operat-
ing system, since the “virtual machine” as seen by a program is accessed by the
virtnal memory system, which in tumn is managed by the operating system. For
example, a user has the capabiility to access nare memory than the system actu-
aly has through the use of virtual nenory, and the OS must maintain page tables
and other information in the system 1o control the various facets of the system
operation. The cache, on the other hand. is usudly hidden from the user and the
system. The decisions as to the operationd modes of the cache are made at
design time and built into the sysem. Thus, a program will not know that a
cacheisbeingw d, except by the speed of processing.

The ratio of access speeds for the cache. Rea, aso differs dragticdly from
Rym. Thedefinition o Rea Will be Smilar to Ryp:

Ta,
Ry = —MAIN STORE
CA TArm
Access times for main store and cache memories improve eech yesar, but typica
times might be 250 nsec for Ty, croee @0 40 N for 7, , . Using thesetimes
Rea becomes

_ TA“A(N STORE
Rea=—F——
Acache

_ 250 nsec

40 nsec

=625

Ingteed of aratio in excess of 110000 &S for Ry, Rc4 is ON the order of 6. This
ratio will vary from system to system. but the effect will be the sang there is not
enough time to change t he task in t he processor. Thus, the processing element is
halted until the information which was nat in cachehas been obtained, and then
the processing continues.

One of the basic questionsis how good the cache memoriesare, and how to
quantify theeffect The term "good" is a relative neasure. and indicates how fast
the processor is operating with the cache compared to the operating rate without
the benefit of the cache. To identify the effects involved with the cache, let us
consider asystem organized as shown in Figure 7.28. This simplefigureindicates
the logica organization of the sysem. but not necessarily the physica organiza-
tion. The figure of mexit that interests us hen is the Tggp, Which is the effective
access time of the memory sysem, considering the cache and main Store
memoriestogether as a single sysem. A very smpligtic formulafor thisting is
givenby:

Tarp=h X Tea+ (1 = k) X (Tgp + Tivs)
where Tc, is the access time of the cache and Ty is the access time of the main

store. The other term in the equation. h, isthe hit rate, or t he fracti on of the refer-
ences found in the cache. Thus (1= #) isthe miss rate, the fraction o the

Chap. 7. Memory Systems

Memory System

Processor

Cache Main Store !
Memory Memory :

Figure 7.28. §/stemwith Cacheand Main Store Mamaries

referencesnot found in the cache. The first term, h x T, indicates that of all the
referencesto memory, the fraction h will incur a penalty of Tca. And the second
term, (1-h) x (Tca +Tys), indicates that the remainder of the references, 1 - h.
will incur a pendty of Tca + Tws. The Tca term appears here to identify the
amount of time that is required to ascertain that the desired referenceis not in the
cache, and the Tys term identifies the amount of time then required to go to main
store to obtain the requested information. With a little algebra, the equation can
be further reduced:

TEFF=TCA+(1_h)XTMS

Thisis a very simplistic formula. since 1t does not include the effects of many o
the red problems that occur in caches. But it is sufficient to give some insight
into the effectivenessof acache memory organization.

The formulafor Tegr is a linear equation, and will specify straight lineson a
linear plot Figure 7.29 gives a plot of Tz as a function of the hit rate, h. Four
different lines appear in the figure. for Rga values of 25. 5, 10, and 20. The
accesstimeis givenin termsof Tys, sothat, if Tere exceeds 1.0, then the response
time of the memory system with cache would be worset han the responset i ne of
the system without cache. The figure identifies thet indeed this situation can
oceur, butthe hit rate must be very poor for Tgp to be greater than 10,

A graphthedt gives a nore intuitively pleasing observation of t he effect of
wing a cache is given in Figure 7.30. Here we plot the speedup of the system,
where t he speedup. S is defined as a ratio of the access times without and with
cache memory:

The plot indicates that, as the hit rate approaches 10, the speedup improves
dramatically. Thisagrees with expectations concerning theuse of caches.

This simple formula is not an accurate model of the exact behavior of a
cache memory, since it does not account for many ddals. We will return |ater to
the calculation of Teme, but let us now consider some of the implementation
methods.

Implementation gtai | S vary for cache memories, and t he following descrip-
tions can be modified to produce results dlightly different from those included
here, For example, the addressable units in a cache will vary depending on the
application, from small unitsin cachesthat are inherently small, to large units, for

Chop. 7: Memory Systemns 381

EFF
Tas)

0.8

0.6

0.4

0.2

0.0

N
7] T
_ =4 ratio ~~0.05
Tus
[f I | I I I T
0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Hit Rate
Figure 7.29. Effective Manary Access T i e, Ty as a Function of Hit Rate h.

caches with an increased mamory capacity. But the basic principles of operation
will be the sane regardiessd the implementation.

For our example cache organization we will use a cache size of 32 Kbytes.
The sysem memory nay be 16 Mbytes or larger, so the cachecan only hold a
fraction of the information resident in main store. The cache is organized to
access information in some basic unit, which we will call a1 i . We will let the
line size be 32 hytes, so the cache will contain 1,024 | i . The main,store will
al'so be organized as lines, so that lines can be exchanged ket veen the cache and
main gore. This basic organizationis depicted in Figure 731 Whenever then is
a hit, the cache provides to the processort he information thet was requested. This
will occur a the speeds of the processor itseif, and only the specified information
(byte, word, double word, etc.) is tranferred. However. if thers is a cache miss
then the data must be brought from the main store into the cache. The informa:
tion is transferred from the man store to the cache by moving an endre line,
Sone cache organizations alse havet he capability of requesting a transfer involv-
ing multiple lines,

To this point we have placed no restriction on the location of informationin
the cache. If the system permits any line from main store to reside in any line in
the cache, then we say that the system is a fully associative organization. Thus,
when the processor identifies an address, all of the lines in the cache must be
interrogated to ascertain if the desired informationisin the cache. Thisleads to
very expensive hardware. since, for the example of Figwe 7.31, 1,024 locaions

Chap. 7: Memory Systems

Speedup

10.0—1

5.0]

1.0

Processor issues
memory requests
in normal fashion

0.2 03 04 0.5 0.6 0.7 0.8 09 1.0

Hit Rate
Figure 7.30. Effective Speedup (Tys / Tepy) of 2 Cache System.

32 KByte Cache: 16 MByte Main Store:
1024 Lines, 524,288 Lines,
32 Bytes/line 32 Bytesfline

P or Cache Main Store
Data path to Data path bet ween

cache operates cache and main store
p,g transfers lines as needed

spte
data a$ needed

Figure 7.31. Organization o Cache and Main Store Memories.

mug be searched. The har dvar e required to search for the address in question
will be greatly reduced if restrictions are place on the al | owabl e locations in the
cache of the lines in main store. 1f a line i n main store hasexactly one location in
the cache wWhen it can be found, we say that the cache has direct mapping. \Ivh
direct mapping, only one location in the cache needs to be queried to find out if
the addressed information is available or not. \IWh direct mapping in the

Chap. 7: Memory Sysems 383

organization of Figure 7.31, each line in the cachecan hold information from any
of 512 linesinthe main store. But each line in main storemaps to onl'y one line
inthe cache

A compromise between the fully associative and direct mapping mechan-
isms involves a technique known as "set associativity.” If, ingteed of only one
locationin the cache, a line in nai N Store could be located in om o two loca-
tios, we say that the cache is two way set associative. or set associative with a
set sizeof two. Likewisg if the line can te located in one of four locations, then
the organization is four way set associative, or set associdive with a.set Sze of
four. Other set gzes are possible, such as eight and Sixteen. The more elements
in a s, then the more hardware is required to implement the cache. With set
associdivity. a line can be found in a limited number of locations, and the
hardware needed for the pardld search of those locationsis manegegble.

If the cache of Figure 7.31 is organized as afour way set associative cache,
then then are 256 sets, each with four lines. The organization of the system is

Processor Address

T, | setiD |Tp]Bye ID
8 Bits 5 Bits
32 bit address. Ty + T, = 19 hits
24 bit address. T1 + T2 = 11 bits
Each set contains 4 lines and their tags Each #ne contains 32 bytes
Tag Array Data Array //
Set 1D Set ID
selects selects
one of one of
256 256
Tag Data
Sets Sets
\ A

Byte |D identifies. location within Ilno/

Figure 7.32. Organization of a Set Associative Cache with Four Sets.

Chap. 7: Memory Systems

shown in Figure 7.32. The address, as supplied by the processor is divided into
fields, each of which has a specific function. Since there are 32 bytesinalie.
then the 5 least significant bib are required to identify the target location within
the line. If the architecture is not byte-addressable, then this requirement changes
accordingly. Since most general purpose machines have byte-addressable
memories, we will proceed under that assumption. With 236 sets, then 8 bits of
the address are needed to specify the appropriateset. The remainder of the bits
form pan of acollectionof information called a tag, and are stored in a memory
that mirrors the organization of the data area of the cache. The tag bits include
the remaining bits of the address, a method to identify if there is data in the line
(since the cache will be empty upon startup), adirty bit (to indicate if the line has
been changed since it was brought into the cache). and other information that is
needed by the system. For example. one of the useful thingsto know is the order
of use of thelinesin aset. If this information is available, then when one of the
lines needs to be removed to make room for a new line, the least recently used
line can provide the location for the new information. Thus, each line in the data
section has associated with it a tag in the tag section. The line resident in the tag
section is uniquely identified by that tag. The process of ascertaining the presence
or absence o information in a cache then consists of examining # tags, where
thereare M elementsin each set.

One of the characteristicsof the cache mechanism is the order in which the
lines of a cache are accessed for a given set of physical addresses. Consider, for
example. a large set of addressesthat is monotonically and uniformly increasing,
each address being 4 bytes greater than its predecessor. In Figure 7.32 the proces-
sor address is divided into three different groups: set 1D bits, byte ID bits, and two
groups of tag hits. The byte ID bits are the 5 least significant address bits. The
remaining bits in the address comprise the set ID bits and the tag bits. Eight bits
are required to specify the set; these 8 bitsform the set ID.

The remaining bits are tag bits, and are further divided into two portions.
which wecall T, and T,. If thereare zero bitsin T, and all of thetag bitsare inT,
then as the address increases successive lines will be placed in successive sets.
However, if there is a single bit in T, and the set ID hits are relocated in the
address accordingly, then a different addressing pattern is formed. As the address
increases. then two lines will be located in each set before moving to the next set
in sequence. If T, has two bits, then four lines are allocated to a set before mov-
ing on. The mechanism which is most beneficial may be determined from the
expected workload viaa simulated addresstrace

Example 7.7: Set associative cache system: Give a data path block diagram
for a two way set associative cache memory with a capacity of 32 Kbytes.
Identify the width of the data paths and the function of each block. Assum-
ing that the memories used in the cache have an access time of 25 nsec,
how quickly can the presence of thelinein the cache be detected?

With 32 Kbytesin the cache, organized in a two way set associative
manner, there are 512 sets, with the previous assumptions. That is, with a
line size of 32 bytes, there are 1,024 lines, and with two lines per set, thers
are 512 sets. Thus. the cache can be made with 512 x 8 memories in a very
natural way. A data path block diagramof such an organizationis shown in
Figure 7.33. Using byte wide memories, three devices would be nesded for
each tag array, and 32 devices would be nesded for each data array. Thus.
70 memory devices would be needed for the cache The addressis divided

Chap. 7: Memory Systems 385

to thet line in the cache. Since the memory changes are not immediately com-
municated to main store, systems with multiple processors that share a common
memory will need additiona capabilitiesif this scheme is used. This is some-
times called the " stale data problem," or the ** cache coherency problem,” and we
will examineit in moredetail later. The write back mechanism rewards programs
that cause writes to memory to occur in clusters, since several writes can be per-
formed at cache speeds before any main store penalty is incurred. When the write
occurs, a mechanism to temporarily hold the line being written out will minimize
the overall time pendty.

The transfer mechanism with its associated storage buffer is an example of
combining the various techniques discussed. For the purposes of discussion, let
us use the system shown in Figure 7.34. The overall block diagram indicates that
the CPU receives its information from (and provides information to) the cache.
Meanwhile, the cacheis connected viaa bus system to four memory banks. Each
bank of memory is essentialy an independent unit, with addressing and timing
capabilities needed for random access. The coordination of information transfer
on the bus is handled by the bus controller. One of the assumptions made in this
organization isthat line size is 32 bytes, and tha each bank holds 8 bytes of each
line. Another assumption is that the transfer of information across the 8-byte bus
requires 50 nsec, and that the access (read or write) to information in a memory
bank requires 200 nsec. So, for a write back memory, the following sequenced
events is one mechanism for performing the data transfers required. There is a
cache miss. and a line needs to be brought in. Assume that the line currently in
the cache in the location in which the new line is to he placed s not dinv — it
has not heen changed since being retrieved trom memory. The accesses lor the
needed line are invoked i each bunk of the memory. When Bank ¢ has the
required line, which occurs 200 nsec after initiation of the read access. it will
transfer the information to the cache. This will be followed by the transfer for
Bank 1, which is ready by theend of the transfer of information by Bank 0. The
transfersfor Banks 2 and 3 follow. Thus, 250 nsec after initiating the request, the
first information is available, and 400 nsec after the request starts, the entire line
has been accessed and transferred to the cache.

The second case includes the write back of information, as well as the
obtaining of information for the cache. This will occur when a "dirty" line is
replaced. In this case, one method of implementing the transfers recognizes that
the bus is not used for the first 200 nsec of the above cycle. The information is
obtained from the cache and sent to the interface modules of the respective
memory banks during the first 200 nsec, and the information is then written back
to the banks as shown in Figure 7.34(b). Asshown in the figure, this policy leads
to the desired information being loaded into the cache within 400 nsec, and the
write back portion completed within 600 nsec. However, by staggering the
requests in time. the effective time can be made 400 nsec. Thus, the write back
scheme can benefit from this one level of storage buffer and increase the apparent
speed of operation.

Example 78 Effective time for cache access: Develop a formula for the
effective access time for a cache memory that uses a write back scheme.
Assumethat t he system must bring information into t he cache to modify it.
rather than to have writes that modify information not in the cache go
directly to memory. (This assumption is made to create a simpler formula,
not to reflect reality.) Assume that the probability that the access is a read

Chap.7: Memory Systems

Memory Access Time = 200 nsec

N

CPU

M Memor Aem Mem
Cache Bank § Bank 1 MBank Bank
Bus Interface Bus Interface | Bus Interface | Bus Interface | Bus Interface

Bus Controller

-

DataBus (8 hytes wide - 64 bits) \

\
Bus Transfer Time = 50 nsec

(@)

Data Acosss Time - Bank 0 {rraristor 0
i Data Access Time - Bank 1 | Tianster 1"
but "~ Bank 1; Data Access Time - Bank 2 Transfer 21
o Bank4 Data AcoessTime - Bank 3 | Transter 3]
{outBanal Write Back Time - b n k 0] .
L Wrts Back Time - Bank 1 I
| f Write Back Time - Bank 2]
' B Write Back Time - Bank 3)
' 50 nseo 200 nsec 250 nmec 400 nsec

(o)

Figure 734. Cache Interaction with Banked Memory. (a) Overall Bjock Diagram.
(b) Timing for Write Back Transfer.

Chap. 7. Memory Systems

iS Pgeap. and that the probability that a cache misscauses a dirty tine to be
written t0 main sore is Ppgyy. Also assume thit reads and writes to main
dore incur the same penalty, Tys, and that there is NO storage buffer in the
sysem. (Again, this assumption is for a Smpler formula rathe than to
reflect reslity.)

The assumptions surrounding chi s problem have been made in such a
nanner to simplify the resulting formulas, rather than to reflect how a
specific cache has been designed To identify t he costs associated with the
various accessing mechanisms. we will examine the costsin each of t he four
obviouscases: reed hit, rea¢’ miss. write hit, and write miss. The t0td solu-
tion will then be a weighted SUM of these CaSES.

389

390

e The read and write hit cases are identical: the desired address is in the
cache, and the cost of the accessis the cacheaccess time: Tea-

The read Mss will incur a penalty of T, to ascertain that the information
isnot in the cache, and then a pendty of Tis to bring in the information.
However, this is not sufficient, sincethere may be a need to write back to
main store a dirty line. Thisincursa pendlty of Tys but occurs only with
probability Ppgrry-

The write miss will also incur a pendty of Tea to ascertain the target
address is not in the cache. In addition, it will require a time Tus to
bring in the desired line. It will also require a time Tys with pmbability
Pprry O Write out a line being displaced. However, once the line is in
the cache, another T, is required to write to the spot selected.

Thus, the costs can be summarized by the following table:

Hit Miss
Read Tca Tea + (1 + Ppgry) X Tys
Write Tea 2X Tea + (1 + Popyy) X Ty

The formula for the system is a weighted sum of the above values:
Tipr = Preap X (X Toa + CH=)Ty + 01 + Pogyy) X Tus | +
(1 = Preap) X
{hXTca+(1-h)X[2XTca+(1+ Pprry) X Tus] |
=Tea X [1+(1=A)X (1 =Pggap)]+Tiys X (1 =) X (1 + Pprry)

A family of plotsof thisequationand its inverseate shown in Figure 7.35.
The various lines are for different valuesof the probability of a dirty line
(Po)- The assumption here is that the cache. time T, iS one-tenth the
main store time Tys. As can be seen from the figure, the pmbability of a
dirty line hasa large impact on the performance of the system.

Other equations can be derived to more closely reflect redity. The differ-
ence will bein the complexity of the analysis, but the approachwill be the same.

A number of other issues nesd to be dealt with in a red system. For exam-
ple, how doesthe hardware handle a request for a word aligned across line boun-
daries? That is, since the system has been assumed to be byte-addressable, what
happenswhen t he request is for 4 bytes, the fisst of which ison one line and the
other three ate on another line? A red system must be capable of handling this
situation. (Note that one solution is to define the system in such a way that all
memory accessesare made on 32-bit boundaries, and obtaining information within
must then be done with software rather than hardware. This tradeoff must be
made by the system architects at the time of the system definition) Another real
problem concernst he mechanism for physically writing information to the cache.
We have not shown in the block diagramsor other examples the data paths nor
logic required to write information back to the cache, but th's must be done in a

Chap. 7: Memory Systems

Teer

1

0.8 —

0.6 —

0.4 —

02 —

EIRNANN

0.0

0.0

l I { I l i | |
02 03 04 05 06 07 08 09 1.0

Hit Rate

10.0—

Speedup

" '5.0—

25

1.0

10.0

- 5.0

— 2.5

— 1.0

00

02 03 " 04 05 06 07 038 0.9 10
Hit Rate

Figure 7.38. Cache Responsc Characteristics for Cache of Enmple 7.8. (a) Effective
Access Time, Ty (b) Effective Speedup, Ty /Toe.

Chap. 7: Memory Systems k1A

392

timely fashion. A third troublesome reality is to coordinate the writes that occur
because of the processor with writes occursing because of O transfers. Some
provisionsmust be made to keep d| of the information current and under control.

One of the side effects is the cache coherency problem, which exists for a
system with multiple processors, each of which hasitsown cache. This situation
isdepicted in Figure 7.36, which shows a multiprocessor with two processing ele-
ments, each of which has its own cache. The cache coherency problem is
exemplified by the following sequence of events. Processor A accessesa location
in the memory, and the line is then loaded into Cache A. Subsequent accesses to
the line will be found in the cache, rather than requiring the main store penaity.
Processor B now needs the information in the line, so it accesses main store and
gets its own copy of the information into Cache B. Further accessesof Processor
B for the information are fielded by CacheB. Processor A now changes the infor-
mation in the line. Processor 8 no longer has a valid copy of the line. since the
information it has in Cache B has been superceded by the action of Processor A.
Thus. the information is not coherent. and the situation has the label of the cache
coherence problem.

If the write back scheme is used by the cache, then there is indeed a prob-
lem, since not only is the information in Cache B incorrect, but Cache B cannot
obtain a valid copy until the information has been updated in main store, which
will occur a some indeterminatetime in the future. A write through scheme will
provide a better basis for action. since the information needed by Cache B will be
available in man store. Thus. the action of Processor A in updating the line in
Cache A should also mak the line in Cache B invalid, so that when Processor 8
needs the information, it will be required to go to main store to find it. Thisis
not the only solution to the cache coherency problem, but it does indicate why
systems capable of multiprocessing organizations often choose a write through
scheme asopposed to the write back scheme.

Example 7.9: A cache coherency solution: The Sequent system is a shared
memory multiprocessing organization. What mechanism is used to alow
each processor to haveits own cache?

The Sequent system is a very interesting combination of the various
mechanisms discussad, both for interface methods and for caching policies.
A block diagram of a sample Sequent system is shown in Figure 7.37. The
CPU module utilized in this system ist he 80386, and included with it are the
other devices that allow it to create the information needed by the memory

CPUA Cche A ¢

System
Memory

crPuB Cache B

Figure 7.36. Computer System With Two CPUs and Two GChes.

Chap. 7. Memaory Systems

System Bus

CPU Cache
@03s8) [(64 KByte)

e—n System Memory|
cPu Cache

(80338) [(64 Keyie)

CPU le—al Cache

(80386) (64 KByte)
8 > Welrlfgces s 10 I/Q Devices
O
CPU fe— Cache Vo v
(80386) (64 KByte) Intertaces [¢ > 10 VO Devices

Figure 737. Block Diagram of a Sequent Multiprocessing System.

system. That is there is a virtual-to-real address trandation mechanism
included with each CPU. Also. high speed floating point units that utilize
the IEEE Hoating point system are available, which wiil enhance the normat
tloating point capabilities ot the 80386 chip set. The cache system that pro-
vides the CPU with the information it needs is a 2 way set associativecache,
with a capacity of 64 Kbytes. It is organized with a line size of 16 bytes;
this gives 4,006 lines. or 2,048 sets. The mechanism used by the cache to
communicate with the main store is a modified write back policy, which
violates the intuitive feeling about how cache memory systems for multiple
processor/multiple cache systems should work. The reason that the system
functions properly can be understood by looking a the mechanisms
included with the system bus.

The system bus is a synchronous, time multiplexed bus similar in
function to the SBI. However, there ae some important differences. The
speed of the bus transactions is 100 nsec, and the mechanism for data
transfersis address-datadata. asin the SBI. However, the width of the data
path is larger in the Sequent than the 4-byte data path of the SBI. During
the address portion of the transfer, the addressis asserted on the lines. Dur-
ing t he data portion of the transfer, 8 bytesof information are placed on the
bus This alows 16 bytes to be transferred in one addressdatadata
exchange. This is designed to be the amount of information in a line, and
90 transfersfrom memory to the caches always occur in incrementsof one
line. With 16 bytes per 300 nsec, thisleadsto a maximum data rate of over
50 Mbytes/sec.

Solying the cache coherence problem requires the work not only of
the system memory, but also of all the cache systemsas well. The cache
modules are organized such that there is an interface to the CPU for the
transfer of information to and from the processor, as well as a watch dog
interface. which monitorsall of the transactions on the system bs. Since
the bus is a synchronous protocol, this can be effectively naneged. The
interface between the cache and t he system bus serves two purposes. The

Chap. 7: Memory Systems 393

394

first is to exchange information with the syssem memory to maintain the
cache information as a normal cache system should. The second purpose is
to watch for memory transactions that take place with the lines it currently
has in the cache. The second function permits the write back policy to be
utilized in the system.

The problem explained above in Figure 7.36 involved two processors
accessing the same location in memory. That set of events would proceed
in adlightly differentfashionin the Sequent system:

® Processor A accesses location XYz in sysem memory. The system
memory responds with the appropriateline. Cache A accepts the line and
usesit. However. it keepstrack of the fact that it has a private copy of
the line.

e Processor B accesses location XYZ in system memory. The system
memory responds with the appropriate line. Cache A aso has this line:
however, Cache A keepstrack of the fact that it has not modified the line,
so that the copy in system memory and the copy in Cache A are identical. .
Cache B acceptsthe line and usesit. However, it keeps track of the fact
that it has a shared copy of the line. In addition, the watch dog interface
on Cache A also notes that the line has been obtained by another cache,
and marks it as shared.

e Processor A modifies location x vz: this takes place in Cache A. and does
not propagate 1o system memory. However, Cache A does send out onto
the bus a notice to other caches that the line has been moditied. The
watch dog interface on Cache B sees this and marks the line as invalid in
the cache.

e Processor B accesses location XYZ; the line in Cache B has been marked
invalid, and the cache then goes to the system bus to get the information.
When Cache A notices that someone needs information from location
XYZ, and that it has the updated copy of that information, it signals the
system memory not to respond to the request, and the information comes
from Cache A instead Thus, when Cache B requeststhe information, it
does not know from what source the information will come, only that
some buscycles later the information will be provided on the bus.

The use of active interfacesbetween the cache and the system bus to moni-
tor the data transfers on the bus allows the write back mechanism to func-
tion properly. The system will execute the programs as specified by the
instruction streams. This organization also allows the creation of the locks
needed for system operation. The interlock instructions of the 80386 are
executed on a location in memory. The cachefirst obtains a private copy of
the location, and then does not respond itself (nor alows the system
memory to respond) until the interlocked transaction is complete.

At this time some commentson cache systems and their utilization are in
order. First of al, in our discussion on caches, we assuned tha the available
address directed the cache to the proper spot to find the information requested.
However, the question studiously avoided was, which address should be presented
to the cache? Isiit a virtua address or a physical address? Machines have been
built that utilize virtual addresses for the cache access. but the more common

Chap. 7: Memory Systems

75.

mechanism is to use physica addresses. The problem remains, then to provide
the virtual-to-real address trandation to diict the request to the proper location.
Toaid in this process, an often used mechanism is called the trandation lookaside
buffer (TLB). This table, located in fast registers or fast memory, contains the
most recent virtual to real trandations. and. with this information, the proper
address can be presented to the cache. This unit can be organizedin a fashion
similar to the cache, or in any manner that will satisfy system requirementsfor
rapid address generation. Basicaly, this unit provides for the cache memory the
sane function provided by the 32082 for virtua memory — maintain in a rapidly
accessiblelocation the trandations needed by the system.

Asthe relativecosts of system resourceschange, different approachesto the
organization of the cache may be appropriate. In this section we have discussed
some of the mechanisms used with set associative caches. One of the mechan-
isms is the replacement of information within a cache. The decison made con-
cerning which member of a set to replace requires hardware to implement —

‘hardware (memory) to remember something about the order in which the

members of the set have been accessed. and hardware to use that information to
ascertain the proper member to replace. As memory costs continue to drop, one
of the approachesthat becomes more attractiveis to use larger cache sizes and a
diict mapping policy. With direct mapping, the hardware needed to maintain
replacement information and to determine replacement priorities is nonexistent,
since the target location can be found in only one location in a cache. By using
this mechanism. the apparent speed can increase. since no multiplexing is needed
between members of aset. At the sume time. the hit rauo remaims high because
the cache is sufficiently large to provide the information needed.

Cache systemsalow processors to obtain the data that they need in a timely
fashion. So long as the information required by a processor is in the cache, then
processing continues without unneeded delays for slower memory systems. This
mechanism is useful in both **standard" memory systems for uniprocessor systems
and for multiprocessingorganizations. The added benefit in multiprocessingsys-
temsis to localize the information questsand to minimizethe requeststo system
memory.

Summary

Memory systemsin computersare used to maintain the programs and dat a needed
by user and operating system dike. In all system components, information is
maintained in devices with two stable states; this enables representation of a one"
and a "‘zero" Collections of these memory mechanisms alow the system to
"remember" information that it needs. The principal requirement for an effective
memory mechanism is the ability to store and retrieve the information in an
organizedfashion.

The speed and retrieval mechanisms used by a memory system lead to
differing functions. The slower, serially organized elementsare used to maintain
large files and other information that can be effectively retrieved in a seria
fashion, instead of a random access scheme. The faster storage mechanismsare
used to maintain information accessed by the computing system in a time critical
fashion. The storage elementsthat can supply information in the shortest timeare
used in register and cache systems: elements that are not quite <0 fast can be
effectively usad as main memory elements. Organization of the random access

Chap. 7: Memory Systems 395

7.6.

elements can be done in a 1-D or 2-D fashion or with similar mechanisms, the.
requirement being that only one of the various locations is accessed at any one
time.

Virtual memory systemsalow the U to operate in “virtual space" which
is not the sane as the actua physica space. The virtua machineis the view of
the system as seen by the user, and includesthose resources of which the user is
aware. The physica machine can be quite different; the physical mode is limited
by the exact configuration of the system. The virtud machine concept allows
users to use more resources than the system actualy has, such as larger memory
spaces. The same concept allows more memory resources to be shared among
many users who are not aware of the entire extent of the sysem. The virtua
memory mechanisms, segmentation and paging, trandate requests from the virtual
system to the actual physical system. This results in systems with a higher
apparent system speed because of the locality observed in programs. during a
small portion of the program, only a fraction of the total memory is used by the
system.

The locality of programs also allows cache systems to function effectively.
The cache alows a small, high speed memory to keep only the most active por-
tions of a program and its data accessible to the CPU. But, since it operates at
CPU speeds, the cache mechanism speeds up the overall processing rate of the
computer.

Problems

7.1 Design a 16 element register bank using 1-D techniques. For register ele-
ments use the '299 as shown in Figure 7.9.

72 Design a 16 element register bank usng 2-D techniques. For register ele-
ments use the '299 as shownin Figure 7.9.

7.3 The IDT7164 is an 8K x 8 static RAM with 13 address lines and 8
input/output lines, as well as two chip selects (CSl-I, €s2-H), a write enable
(WE-L), and an output enable (OE-L). Using this device, design a 64-Kbyts
memory using |-D organizational techniques. How many nonmemory dev-
icesare required for this memory system?

74 Use the IDT7164 described in Problem 7.3 to create a 128-Kbyte memory
system. Use 2-D organizational techniques. How many nonmemory dev-
icesare required for the memory system?

7.5 Design the dynamic RAM controller shown in Figure P7.5. The inputs are
an 18 line data address, a 9 line refresh address, a refresh request line (REF-
H), and a data read line (READ-H) thet initiatesa read action. The outputs
are a 9 line address, which is to go to the dynamic RAM the row address
strobe (RASL), the column address strobe (CAS-L), and the ready line
(READY-H).

The behavior of the &vice is as follows A refresh cycle is accom-
plished by asserting the refresh address on the RAM address lines (and
allowing 50 nscc settling time), then asserting t he RAS signal for 150 nscc.
and releasing both RAS and the address lines. A read cycle is accomplished
by asserting 9 bits of the address (and waiting the 50 nsec required for set-
tling), asserting RAS waiting another 50 nsec, then changing to the other 9

Chap. 7: Memory Systems

READ-H
-
BERH DW READY-H
ADDRESS_IN _~ | Controlier
18
ADD!
9: RESS_OUT
RI
REF_ADDRESS 9;

Figure P7.5, DynamiCRAM Controller.

address bits, (and another 50 nsec wait) asserting CAS, waiting 100 nsec,
and then asserting the ready line. This condition remains until the READ is
released. whereupon the system retums to the quiescent state. Assume a
system clock at 20 MHz. To complete the design:

a Give a data path block diagram. Assume the existance of N-bit 2-1
muxes with hi-state outputs and N-bit tri-state drivers. (These could be con-
structed from multiple copiesof a'257.)

b. Give a state diagram describing the action of the device. Include signal
names and assertion levels.

c. Design acircuit todo the work of pen b.

d. Describe what moditications or additional logic would be required to
implement the write capability as well as the read capability.

76 The block diagram for a general purpose system shown Vith Probiem 4.7 is

included here as Figure 7.6 Modify the block diagram to include a seg-
mentation register. That is, providea way that all addresses to n@nory can
be offset by the value in asegnent register. [@5ri be the modifications that

Memory

L® | Lee] [mRl-

Rog"'lster

=
mux | [sp]

System Bus

Figure P7.6. Block Diagram for General Purpose Machine.

Chap. 7: Memory Systems 397

398

7

must be made to an instruction set to control the system with this
modification.

In general, the single segment register of Problem 7.6 does not provide
sufficient capabilities to a computer system; a system must be capable of
handling several segments. Modify the block diagram of Figure F7.6 to
includet he capability of several segment addresses. What contributionsare
made by thisenhancementof the arrangement of Problem 7.6?

7.8 Accessto a memory system by a number of programs can be enhanced by

9

710

711

the use of paging. Modify the block diagram of Figure F7.6 to include a
hardware page table, and specify the manner in which the page table is used
to generate the effective memory address. Why will this method be faster
than the segmentation mechanismof Problem 7.7?

A computer system is configured with a disk to provide high speed file
storage. The disk system has R sectors per track, and stores 512 bytes per
sector. The rotational speed of the disk is 3600 RPM The average seek
time is 30 msec. The average instruction executiontime is 1.5 psec. When
a page fault occurs, how much time will be required before execution can
continue on that program? ldentify each of the contributing times, and
describewhat is happening during that time. How much would the delay be
modified if the seek time of the disk were reduced to 24 msec?

Consider a cache organization With the foilowing characteristics:

Main memory size: 16 Mbytes
Cache memory Sz& 32 Khbytes
Cachelinesize: 64 bytes
Cachecycle time: 50 nanoseconds

Mai n memory cycle: 500 nanoseconds
Robability of cache hit: a

Robability of write: 25
Rubability lined i : 2
Cache organization: 4 way set associative

a Give a representation of the address goace Tet is what bits in the
address are for what? Assume that then are 2 bits betweenthe byte identi-
fying bitsand the set identifying bits.

b. Assume that 128 x 8 memoriesare used to build the cache. Give a data
path block diagram of the cache system. Assume that no parity checking is
needed, and that the cache is a write back cache.

¢. Find the effectivetime for a memory access.

A certain cache memory machine uses a cache that can store 512 blocks of
64 words each. Assumea main memory size of 1, 048, 5/6words.

a Which bitsof the word address should specify the block number?

b. If aset associative schame is used, which hits should specify the set
number?

¢ Describe the worst Case reference partern (for maximum cache Mss)
assuming (i) direct addressing, (ii) set associative with two blocks per set,
(iii) set associative with four blocks per set, (iv) fully associativecache allo~
cation How likety are t hese worst cases?

Chap. 7: Memory Systems

11.

712 A certain computer has a 16-Mbyte main memory, cycle time d 350 nsec.
It also has a 32-Kbyte cache, cycletime of 25 nsec., The cache is set associ-
ative, four lines per set. 32 bytes per line

a The address space is partially defined below. Completethe specification.

Tag Bits | Set Bits | Tag Bits | ByteinLine
3 5

b. Assume that an address trace of a program is such that the linesin use
are accessed in thefollowingorder ... 0123012401230124.. If
this addressing pattern is continued, what will the effective memory access
time be?

713 Develop a formula for the effective access time for a cache memory that
uses a write through scheme. Assume that writes that are cache misses do
not have any effect on the cache at al. except for the time involved in the
transaction. Assume also that no buffering is provided for the writes to
main store. State all assumptionsthat you make in the process of problem
solution.

714 Repeat Problem 7.13 assuming that a buffer is available between the cache
and main store. This buffer will alow the operation of the memory system
to continue once a write has been initiated. However. if a write is needed
and the butfer isin use, the system must wait until the datain the buffer has
been transferred to main store.

References and Readings
[AMD8s] Advanced Micro Devices, Bipolar Microprocessor Logic and Interface Data
Book. Sunnyvae CA: AdvancedM i Devices, 1985.

[AhDe71] Aho, A V. P. J Demning, and J D. Ullman, “Principles of Optimal Page
Replacement,” Journal of the ACM. Vol. 18, No. 1, January 1971, pp. 80-93.

[Baer84] Baer, J. L., "Computer Architecture,” Computer. Va 17, No 10, October 1984,
pp- 77-87.

[Bacr80] Baer, J. L., Computer System Architecture. Rockville, MD: Computer Science
Press, 1980.

[Bartg5} Bartee, T. C, Digital Computer Fundamentals 6th edition, Nev York: McGraw
Hill Book Compeny. 1985.

[BaBr77) Batson, A A, and R E. Brundage, "Segment S i and Lifetimes in Algol 60
Programs,” Communications of the ACM. Vdl. 20, Na 1, January 1977, pp. 36-44.

[BaJu70] Batson, A, S Ju, and D. C. Wod. “Measurements of Segment Size,' Communi-
cations of the ACM. Vael. 13, Na 3, March 1970, pp. 1565-150.

[BeNe69] Belady, L. A, R. A. Nelson,and G. S Shedler, " An Anamaly in the Space-Time
Characteristics of Cettain Programs Running in Peging Machines.” Communications
of the ACM. Vd. 12, Na 6, June 1969, pp. 349-353.

[BeNe71) Bell, C. G. and A. Newell, Computer Structures: Readings and Examples. New
York: McGraw Hill Book Company, 1971

Chap. 7: Memory Systems 399

{Bish8s} Bic, L., and A. C. Shnw, The Logical Design & Operating System. Englewood
Cliffs, NJ Prentice Hall. 1988,

[BrHa73) Brinch Hansen, P.. Operating Systems Principles. Englewood Cliffs. NJ: Pren-
ticc Hall. 1973.

[BuGo46] Burks A. W. H. H. Goldstine, and J von Neumann, “Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument,” Institute fo Advanced
Studies, 1946, reprinted in [Swar76].

[chOp76) Chu, W. W.. and H. Opderbeck, “Program Behavior and the Page-Fault-
Frequency Replacement Algorithm." Computer. Veol. 9, No. 11, November 1976,
pp. 29-38.

[Deit84] Deitel, H. M, An Introduction to Operating Systems. Reading, MA: Addison-
Wesley Publishing Company. 1984.

[Denn70] Denning, P. J., “Virtual Memory,”" ACM Computing Surveys. Vol. 2, No. 3, Sep-
tember 1970, pp. 153-189.

[Denn80] Denning, P. J, "Working Sets Past and Present.” IEEE Transactions on Sofrware
Engineering. Vol. SE-6, No. |. January 1980, pp. 64-84.

(Fiet80] Fletcher. W. |, An Engineering Approach to Digital Design. Englewood Cliffs,
NJ Prentice Hall. 1980.

[FoMESS] Fossum, T.. J. B. McElroy, and W. English, "An Overview of the YAX 8500
Sysem." Digital Technical Journal. Hudson. MA: Digital Equipment Corporation.
1985. pp. 8-23.

[GeTi83] Gelenbe, E. P. Tiberio, and J. Boekhorst. “Page Size in Demand Paging Sys-
wems.” Acta Informatica. Vol. 3. No. 1, 1973. pp. 1-23.

[BuFr78] Gupta, R. K., and M. A. Franklin, "Working Set and Page Fault Frequency
Replacement Algorithms. A Performance Comparison,” JEEE Transactions on Com-
puters. Vol C-27, No. 8, August 1978, pp. 706-712.

[HaVr78] Hamacher, V. C. Z. G. Vranesic, and S. G. Zaky, Computer Organization. New
York: McGraw Hill Book Canpany. 1984.

[Haye88] Hayes 1. P., Computer Architecture and Organization, 2nd Edition. New York:
McGraw Hill Book Company, 1988.

[Kain89] Kain, RY.. Computer Architecture, Software and Hardware. Englewood Cliffs,

NJ: Prentics Hall, 1985,

[KaWi73] Kapian, K. R and R O. Winder, “Cache-Based Computer Sysems.”” Computer
Vol. 6, No. 3, March 1973, pp. 30-36.

{KaRa75} Knuth, D. E., and G. S Rao, "Activity in Interleaved Memory,”" JEEE Transac-
tions on Computers. Vol. C-24, No. 9, September 1975, pp. 943-944.

[Kuck78) Kuck, D. J. The Structure & Computers and Computations. New York: John
Wiley & Sons, 1978.

[Lang82] Langdon, G. G.. Jr., Computer Design. San Jose, CA: Computeach Press Inc.,
1982.

{Lipes8) Liptay, J. S., “Structural Aspects of the System/360 Model 85 — The Cache,”
IBM Systems Journal. Vol 7, No. 1, 1968., mp. 15-21.

[Matis0] Matick, R. E., *Memory and Storage,” in [Ston80], pp. 205-274.

[Mnii77) Matick, R E., Computer Storage Systems and Technology. New York: John
Wiley & Sons, 1977.

Chap. 7: Memory Systems

[MaGe701 Mattson. R L., J. Gecsei, D. L. Slutz, et d,, " EvaluationTechni ques for Storage
Hierarchies™ IBM System Journal. Vol. 9, No. 2, 1970. pp. 78-117.

[PeSi83) Peterson, J L. and A. Silberschatz, Operating System Concepts. Reading, MA:
Addison-Wedey Publishing Company. 1983.

[Pohm84] Pohm, A V., "High Speed Memory Sysems’™ Computer. Vol. 17. No. 10,
October 1984. pp. 162-171.

[Rand69] Randell, B, "A Note on Storage Fragmentation and Program Segmentation,”
Communicationsd the ACM. Vol. 12, No. 7, July 1969. pp. 365—3.

[Schn85] Schneider. G. M. The Principles d Computer Organization. New York: John
Wiley & Sons, 1985.

[Shiv8s] Shiva, S. G., Computer Design and Architecture. Boston, MA: Little, Brown.
1985.

[SiBe82] Siewiorek. D. P. C. G. Bell. and A. Newell, Computer Structures: Principles and
Examples. New York: McGraw Hill Book Company. 1982.

[simi82] Smith. A. J. "'Cache Memories,” ACM Computing Surveys. Vol. 14, No. 3, Sep-
tember 1982, pp. 473-530,

[Smi8S] Smith. A. J. "'Cache Evauation and the Impact of Workload Choice,"" Proceed-
ings d the 12th Annual International Symposium on Computer Architecture. Silver
Springs, MD: /EEE Computer Society Press. June 1988, pp. 64-73.

{Smit00} Smith, A. |.. “Disk-Cache-Miss Ratio Anatysis and Design Considerations,” ACM
Transactions on Computer Svstems Vol. 3, NO. 3. August 1985, pp. 161-203.

[SmGos3| Smuth, J. E. ad J. R. Goodman, "A Study of Instruction Cache Organizations
and Replacement Poiicies,” Proceedings d the /0th Annual Symposium on Com-
puter Architecture. June 1983, pp. 117-123,

[Ston87]) Stone. H.S., High-Performance Computer Architecture. Reading, MA:
Addison-Wesley Publishing Company. 1987.

{Stre83] Strecker, W. D., "Transent Behavior of Cache Memories'" ACM Transactions on
Computer System. Val. 1, No. 4, November 1983, pp. 281-293.

{Swar76) Swanzlander, E E., Jr.(Ed), Computer Design Development: Principal Papers.
RochellePark, NJ: Hayden Book Company, Inc,, 1976.

[Tane84] Tanenbaum, A. S. Structured Computer Organization. Englewood Cliffs, NJ:
Prentice Hall, 1984.

[T185] Texas Instruments, The TTL Data Book. Volume2 Dallas, TX: Texas Instruments,
1985.

[ThKn86} Thakkar, $. S., and Knowles A. E, A High Performance Memory Management
Scheme."" Computer. Val. 19, No. 5, May 1986, pp. 8-19.

[Wilk87] Wilkinson, B., Digital System Design. Englewood Cliffs, NJ: Prentice Hall Inter-
national, 1987.

Chap. 7: Memory Systems 401

