8

Pipelined Systems: Low Level

Parallelism

Regardless ot the application of a computer system, there is always some motivie-
ton 10 enhance the speed ol execution ot the system. One way to achieve this is
to use a technology that operatesat a higher speed. and many machines have used
this method to produce a system that performs more work in a given amount of
time. However, there are practical limits to this method since there are practical
limits to how fast signals will traved. If speed increases are to be achieved
without a faster technology, then some degree of concurrency is necessary. If the
circuits can't function faster, then to increase t he apparent speed of t he machine,
the basic modules of the machine should perform functions simultaneoudy. This
can be done if the functions to be performed are independent. That is, if the
resultsof oneinstructionare nat needed for the executionof another. then the two
functions can be done a the sane time If this technique is successful, then
instead of one operation per unit time, N operations per unit time are performed
(for N independent units).

A variety of ways have been utilized to increase the amount of concur-
rent execution in computers. One method is to organize a number of identica
functional units in such a way that they can al perform the same operation on
different sets of data simultaneously. This is caled single ingtruction stream,
multiple data stream processing (SIMD), since many Processors are executing
simuitaneously, but the action is controlled by asingle unit. For certain classesof
problems, thiscan be a very beneficial organization. Machinesthat have used this
method of organizationincludethe Itliac N [BaBr68, Thur76}, the Massively Paral-
lel Processor [Batc80, HwBr84), and the Connection Machine [Hill8s).

Another method of performing simultaneous tasks is to divide the work to
be done into portions that can operateinthe same period. For example, von Neu-
mann suggested that the /O operationscould occur simultaneous with processing
[BuGod6}, which is a common practice in computer systems today. Overlap can
also be achieved by divi ng instruction execution into its constituent pans: fetch.

81

decode, and execute. That is, while one instruction is being decoded, it may be
possible to fetch the next ingtruction. And at the same time perform the work
prescribed by the previous instruction. In this type of mechanism, the results of
one step are usd by the following step, and the process resemblesa pipeline,
which is why the method is called pipelining.

We are familiar with the u if pipelinesto transport fluids across long dis-
tances. The fluid is placed into the pipe a the origin, and after some delay, the
fluid becomes available a the destination. The materid is kept flowing through
the pipe by forcing more materid into the beginningor front of the pipe. Because
of the length of the pipe, a great ded of material may be sent into the pipe before
anything is available at the end. But once the flow has begun, then there is a
direct correl ation between what enters the pipe and what |eavesthe pipe.

Other relatively common processes fit this description for pipelining.
Manufacturing uses pipelines. called "assembly lines" to produce goods in a
timely fashion. When the "pipeline” is flowing in an automobile factory, a new
car exits the pipe every few seconds. This is an interesting example since the
pipe is not homogeneous. That is since not al automobilesare exactly aike, as
the basic unit (in this case a car) moves through the pipe (the assembly line).
featuresare added at the respectivestationsin the pipe according to a specification
accompanyingthe unit through the pipe.

Other processes that form pipelines are plentiful. One example is food
preparation in restaurants. where individuas perform specific functions on the
food as it is processed. Another example is an automauc car wash system, where
cars to be cleaned follow one ancther thouph a system where the vanous cleaning
steps are applied successively to each unit. Even school systems can be con-
sidered a pipeline process, since one class followsanother through the educational
process, each learning conceptsin a predetermined order.

In this chapter we will examine more closely this concept of pipelining, and
apply the principles to the design of pipelined computer systems. Two basic
kinds of pipesare used in computers: data pipesand control pipes. Both result in
higher execution rates, since more answersare available per unit time. And both
achieve effective results by overlapping independent functions. First we will
identify the limits to the process, and then examine practical implementationsof
the mechanism. The information in this section is intended to be an introduction
to the concept of pipelining, and an examination of some of its characteristics.
Additional detailscan be determined by examining pipelinesof real computer sys-
tems. and by looking at the implementations of some of the classical machines.
Of particular interest are the scoreboard technique for reservation of time slots
[Ther64], and the Tomasulo agorithm for utilization of multiple functiona units
with a pipeline [Toma67]. In addition, some texts present a more complete discus-
sion of many of the aspects of pipelining than presented here [Kogg81, Ston80,
HwBr84].

Pipelined Systems: Overlap d Independent Processes

The use of pipelining in computer systems is used to allow processes that can
proceed independently to do so. For an example, consider the process of doing a
floating point addition. A block diagram of one method of doing thisis shownin
Figure 325. which is repeated with a few modificationsin Figure 8.1. It is possi-
ble to perform the addition function as shown in Figure 81 but since the

Chap. 8 Pipelined Systems: Low Level Parallelism 403

Input

Information

Input | i : ‘ |
P | |
o —— | Process on Data : ———

Tp

i

Qutput

i information

Ql’[im
m

R Output
E[E| E .
a Information

=T

T

t

Process with Fipdining Registers Addss

REG

Figure83 Processingwith Nonpipdined and Pipefined Mechanisms

unrealistic assumption that Ts is the same for al sections. The results from the
section are saved in a register. and the register time is represented as Tgeg. The
total time for a section. then is T + Tyeg. Using this model of processing, let us
follow the execution ot the process in a nonpipelined and a pipelined system.

To pertorm A different operations 0N @ nonpipelined implementation would
require the apptication of the processing hardware 4 different times. as shown
in Figure 84. Thus, the total processing time for the M instructions would be
M x Tp.

On the other hand, the use of pipelining allows different sectionsof the unit
to be used in a single clock cycle. One way to visudize this is to construct a
space-time diagram for the hardware: that is timeis shown on the X axis, and the
functional units(in this case. sectionsof the pipelined process) are shown on the Y
axis. Then the progress of the # instructionscan be followed through the system.
Such a diagram is shown in Figure 85 for the six section pipe of Figure83. The
timefor the first instruction will beN x (Tg + Treg), where there are N sectionsof
a pipe. In thiscase, N = 6. If we assume thet the cost of the register is not
included (Trgg = 0), and theinitial process isequally divisible, S0 that Ts =Tp / ¥,
then the firg instruction takes the same amount of time as the first instructionof a
nonpipelined implementation. Tp. The benefit comes fmm the other instructions,
since the second instruction will be finished T after the first instruction, and so
on. So, the total time reguired for M instructions is just the time required for the
firgt instruction [# x (Ts + Treg)], plus # - 1 additional section times[(M = |) x

3 M-1 M

T |

e

4
Tl %] oo o (] %]

Time

Figure 84 Timing Requirements for Nonpipelined Implementations,

Chap. 8 Pipelined Systems: Low Level Paralielism

Section 6
Section §
Section 4
Section 3
Section 2
Section 1

— TinsTR=6%(Tg+TReg) —

Section T‘lme-Ts+TREG
1 2 3 5 O 0 o M |
1 2 3 4 M
1 2 3 4 5 M
1 2 3 4 5 M
1 2 3 4 5 M
l 1 2 4 5 O 0 O I M

Time

Fir e8.s5. Overlapped Execution of Instructions.

(Ts * Treg)]- So, the totd timefor M instructions is (N + 4 — 1) x (Ts T Tgeg).
To see what the speedupis, we then cdculate:

Time for instructionswithout pipelining
Speedup = — — ——— P perning
Time for 4 instructions with pipelining

From the abovetimes, this becomes

MXTP
(N +M = 1)X (Tg+ Treg)

Speedup =

Tp
N-1
) X (Ts + Treg)

(1+

For largeM, the (N-1)/M term becomes negligible, and the speedupiis

=—Te

=I‘L, ifTS»TREG
Ts

=N

If weassune tha Treg is negligible, then the speedup is merely N, the number of
sections in the pip. This agrees with our intuitive feding of how much faster a
pipelined implementation should be; indeed, we expect a six Secti on pipeto pro-
duce results six times fagter than the nonpipelined implementation. At the sane
time, we nost remember thet this observation is valid only if we disregard the
ti me required for the storagefuncti on, and we o assune a steady state condition
where ¥ islarge.

Chap. 8 Pipelined Systerns: Low Level Parallefism 407

It isingtructive to also examine some d the other information evident from
the abovediscussion. First, pipdining implementations do not reducethe tira for
an instruction. That is, t he timeframthe stan to the finish o a single instruction
will not decrease with the use of pipelining. If anything, the actual time to
accomplish an instruction will be longer than the nonpipelined implementation,
since the cycle time will be geared to the longest section time, and the registers
will add redl delaystothe system. Thus, from the initiation of the operation to
the completionof the firgt instruction will take a time dependent on the cycle time
and the number of stages in the pipe. This time is sometimes called the "fill
time" since it is the time required to fill al of the stagesaf the pipe Obvioudly,
for a larger number of stagesin the pipe the fill time will be longer. This time
may become important in the operation o the pipelined process, as we shdl see.

Once the first operation hes been completed, the remaining operations will
follow at the rate of one result per cdlock cyde This will continue as long as
operationsare availableto perform, or until there is aconflict within the pipefor a
resource. We will identify possible conflictsand some mechaniams for handling
them in a later section. When the pipe is full and producing new results & the
rate of one result per dock cycle, the system is operating at its highest efficiency.
One of the tasks of the system architect is to create a unit capable of supporting
the data movement needed to permit the pipeine to operate at maximum
efficiency.

Another observation concernsthe effective speedup over a nonpipdined sys-
tem. The above equations can he plotted to identify the speedup achieved by
usng the pipdine technique. To give some physical "fed" for the observation.
we will meke some assumptions about the process we are pipelining. Assume
that the nonpipelined system requires 100 nsec to complete. Thus, with no pipe-
lining, the process will have a speedupdf 1 Then. as the amount of pipelining
increases, the speedup will increase. A st, we will assume tha the time required
by the registerscan be ignored, which is nat a redlistic assumption. That is we
will assumethat Treg is zero. With aTs of 50 nsec, the speedupis 2; with aTs of
25 nsec, the speedup is 4; and as the time per section, Ts, gets smaler, the effec-
tive speedup increases. 1t is evident from the equations that the effective speedup
will asymptotically approach the ¥ axis Thus, if the process were infinitely
divisible, then the speedup could be infinitely large. A plot of effective speedup
versus Tg iISshown in Figure 8.6. The circled places on the curve are the effective
speedups for N = 110 12.

The red gans avalable with pipdining are limited by two different
mechanisms. The firdt is the fact that a real process is neither infinitdy nor
equdly divisble. Thus, the time tha needs to be considered is nat Tp/N, but
rather the maximum section time resulting from dividing the initid processinto N
sections. The second mechanism is the ddlay time added into the system by the
use of regigers or latches. If we assume a register delay of 10 nsec, then the
curve of Figure 86 mugt be dtered accordingly. This gives rise to the second
curved Figure86, which indicatesthat the effective speedupis directly impacted
by the register ddays. An interesting observation can be made by following this
second curve until the Tg is-zere. At this point the effective speedup is only 10.
Thus, even if t he processing were fre2, the time pendty incurred by the use of real
registers |imitsthe speedup achievablewith pipelining,

One of the assumptions implicitin the above observations is that there is no
problem with keeping the pipefull. However, in real pipelines thisisachaleng-
ing problem, and later in this chapter we will identify some techniques used to

Chap. 8: Pipelined Systems: Low Level Parallelism

12.0 -

10.0 —

Speedup
6.0 —

4.0 —

0.0

20.0 40.0 60.0 80.0 100.0

Ts,PmeessﬂmeperSecuon

Figure 8.6. Specdup Achievableby Pipelining.

keep t he pipeas full as possible. But supposethat the system is not able to kegp
the pipe full. but for some reason the sections of the pipe are not utilized for a
fraction of clock cycles. How is the speedup affected? To answer this question.
kt usreturn tothe speedup calculation:

T i for M instructions without pipelining
Time for M instructions with pipelining

Speedup =

Assune the a fraction Of the cycles are unused, and let that fraction be
represented by f. Withthi s assumption, t he amount of t i Ne required t o execute M
functions is not N + M - 1, but rather (¥ + M — 1) x (1 + f). And the equation
developed above changes to become:

Chap. 8: Pipelined Systermns: Low Level Parafielism 409

410

Speedup
6.0

5.0

40

3.0

20

1.0

0.0

_ MXT,
Speedup (N+M=1)x(1+f) x (Ts + Tg)

Ty

N

(1+ ;l)x(l+f)x(1‘5+rn)
T
(1+f)x(Tg+Tg)

Best speedup
lL+f

Obviously, a pipelined processor is designed in such a way that f is kept as small
as possible. However, it is instructive to note the effective degradation in perfor-
mance that occurs with different values off. Consider the previous exampleof a
process requiring 100 nsec to complete. and assume that the process is divided
into 6 equal sections. Figure 8.7 gives a plot of the effective speedup versus the

0.0

0.2 0.4 0.6 08 1.0

f. Fraction of Pipeline Pauses

Figure 8.7. Effective Speedup as a Function of £, the Frequency of Pipeline Pauses.

Chap. 8: Pipelined Systems: Low Level Parallefism

82

il

frequency of the pauses of the pipe. If the frequency is 1, then the effective
speedup is 3. That is, even if there are as many pause cycles as there are work
cycles, then the effective speed is till 3 times faster than a nonpipelined imple-
mentation. Thus, the pipelining techniqueis effective for improving the speed of
a process, even if the pipe cannot be kept full all of thetire

Pipelining is a technique that can be applied in any situation in which
sequentially related events can proceed on independent operations in the same
timefrane This will occur in the processing of data in arithmetic units and in
the processing of instructionsin control units. Let us examine these two mechan-
ismsand identify some of the techniquesthat can be used.

Avrithmetic Pipes: High Speed Calculations

In Chapter 3 we identified severa mechanismsfor doing high speed arithmetic.
We will now examine some of these mechanismswith the intent of applying pipe-
lining techniquesto speed up the arithmetic process. Many metrics are considered
during the process of dividing an arithmetic function into pipeline sections, and
each designer will arrive a a compromise that meets the system design goals. As
stated in the previous section, the objective of utilizing pipelining in arithmetic
units is to achieve a speedup by performing operations concurrently for indepen-
dent data sets. The questionsto be asked by a designer in search of higher perfor-
mance ded with timing issues and overall system issues:

« How cun the initia process be subdivided to obtain the best results?
¢ What clock cycle time satjsfies the variouscomponentsof the process?

¢ What changes nesd to be made in the system to provide the overall data move-
ment needed to sustain continuousoperation by the pipeline?

e What metricis most meaningful to the overall system design goals?

The divisibility issue is one that can be dealt with in different ways to meet
different design criteria Let us look at floating point multiplication for an exam-
ple of a data operation which can be pipelined. The basic organization for this
system is shown in Figure 88 The data movement within the system must

A
er

Qutput
Register

Floating Point Data
Multiply Hardware System

I___._IL__l_I

i

Figure 3.3, Diagram of Hoating Point Multiplication Unit in System.

Chap. 8 Pipelined Systems: Low Level Parallelism 41

412

provide the operands for the unit in question, and in this case the multiply unit
will performthe operation. The desired improvement is to speed up t he operation
as much as possiblear feasible.

As can ke seen from the diagram, one degree of pipelining is already avail-
able That is the floating point multiply unit can provide the action of multiplica-
tion, but the data system is responsiblefor supplying operands and handling t he
results. Thus, three operationscan be overlappedin time, or pipelined: the fetch-
ing of the input operands to provide data to the multiplier, the multiplication
function itself, and the storage of the result. Our concern here is with the actual
floating point hardware, and the steps taken to pipelinethe unit. We will examine
the particular questions raised by this example, and also examine some of the
other system questions.

As described in Chapter 3, the floating point multiplication can be accom-
plished in @ number of ways We will assume that the floating point number is in
a 32-bit forma. with a sign bit, an 8-bit exponent, and a 23-hit fractiona
mantissa. with hidden bit. Thus, to obtain

Qutput =4 x 8
where the output and both inputsare in this format, then

MANTISSAour % 255707 = MANTISSA, < 2%« MANTISSA x 25

= MANTISSA, X MANTISSA, x 2*F¥Fs = 8XF0)

The exponent is the sum of the two operand exponents, and the mantissais the
product of the mantissasof the two input operands. With a base two representa-
tion, the product can either be comect or require a I-bit normdization step.
Hardware can be configured in many ways to perform the operations identified
above, some maore efficient than others. For the purposesof illustration of princi-
ples, we will select amechanism and attempt to pipelineit.

The formation of the floating point productcan be broken into different sec-
tions depending on the desired results. Theinitial hardware organization is shown
in Figure 89. The processis performed in three steps partial product formula-
tion, partial product addition, postnormalization, and exponent formulation. The
initial exponent formulation can ¢ done in paralld with partial product formula-
tion and addition, and then adjusted appropriately when t he necessary postnormal-
ization is performed.

The partial products are formed by Am278558s, which are 8x8-bit multi-
pliers Thus, for 24-bit mantissas, nine individual multipliers are needed. This
forms three rows of partid products, but the significance of the partid products
formed in this process overlap one another. These partial productsare identified
as P1 through P9, with the significance of the bits identified in Figure 89. These
partial products arc then summed in an adder tree made of 74AS881s, 74AS5882s,
and 74AS182s. The net result is a 48-bit number that may or may not havea “1”
in the mogt significant bit postion. Thus a normalization S€p iS required, and
thisis formed by a set of multiplexers 74AS157s. The addition of the exponents
is handled by 74AS881s. The element not shown isthe sign bit. and the sign bit
of the result will merely be the exdusive-OR of the sign bits of the two input
oper ands.

Chap. 8: Pipelined Systemns: Low Level Parallelism

A(7:0)
EXP, E’I‘Ps B(23:16) B(15:8) 8(7:0)
| 1 |
Exponent Add
‘8818
{ 1
P3(31:16) P2(23:8) PY(15:0)
A(15:8)
B(23:16) B(15:8) B(7:0)
1 |
[|
P6(39:24) P5(31:16) P4(23:8) Partial
A(23:16) Gonargion
Section
B(za:;s) B8(15:8) B(7:0)
|
| I
P9(47:32) P8(39:24) P7(31:16)
P6(39:24), P8(39:24),
P4(23:8) P2(23:8) P5(31:16) P3(31:16)
| 1 1 P9(47:32),
32 Bit Adder 16 Bit Adder P7131 116),
‘8818 & '882 ‘8818 & '182 PY15:0)
. 48 Bit Adder
'881s & 192
of
48 Bit Adder i
'881s 6 192 p;m
ExpotggtisAdlust Post Normalization Multilexers N Pﬁst“ "
Section
EXPout MANTISSAq

Figure 8.9, Block Diagram Level Representation of Hardware Floating Point Mechanism.

Chap. 8: Pipelined Systems: Low Level Paralielism

413

a4

The time required for the hardware shown in Figure 8.9 is the sum of the
tire required for each of the three sections. The formationof t he partial products
requires 75 nsec. The addition of the partial products requires another 73 nsec.
And the mantissaout will be availablel1 nsc later. However, the adjustment of
the exponent requires 18 nsec, S0 the mantissa is actually available about 9 nsec
before the exponent. Thus, the whole process can be accomplished in 166 nsec.
If this isto fit in a stracture as shown in Figure 8.8, then an additional 14 nsec is
required for the setup time, hold time, and the propagation delay time through a
register, such as the 7¢AS3574, Thus, the entireoperation will require 180 nsec.

If we place registers in the process between the major sections, then the
result could be represented as shown in Figure810. With theinitial process bro-
ken into three sections, we would like to see a speedup of three. But the clock
cycle time of the system must be adjusted to accommodatethe maximum time of
the individual sections. Thus, for this @(ample Terock cycte = Tp + Trec =
75 + 14 = 89 nsec. This resultsin a speedup of amost exactly two, which could
be disappointing. However. in the process of doing this type of a design. loca
tions that need atention if more speedup is required are identified. In this case,
we are limited by the formation of the partial products. Slower speed parts can be
used in the postnormalization section, and other changes can be made to the par-
tid product addition section. But until a faster method of determining the partial
productsis obtained, the system will not run faster.

The multiplication example identifies several problems that need to be
solved. The description above is for a very smple multiplier. and several things
need to he done to the design to make it a red system. For example.

e How is overtlow/undertiow checked?

e How much hardware is required, and how does it affect the speed of the sys-
tem?

o With respect to the allowable numbers, is unnormalized operationto be permit-
ted? If so, how is the overall systemto be changed?

Is it necessary to compute the entire partial product array? Of the 48 bits
which result from the multiplication, only 24 will actually be a part of the
result. Therefore, may it be acceptableto create only the most significant por-
tionsof the partial product array under SOme conditions?

o When the appropriate bits are available, what kind of scheme is used for ded-

ing with the extra bits? Truncation? Rounding? Round-to-zero? And is this
to be done before or after post normalization?

Register Register
Input
Operand —»
A Partial Partial Post
Product Product Norm [Result
I Formation Addition
Operand —+ '
B

Figure 810 Block Diagram Level Representation of Hardware H 0ati ng Point
Mechanism.

Chap. 8 Pipelined Systems: Low Level Paralielism

All of these questions mugt be addressed in a red implementation, and the
answerswill reflect the prioritiesof the designers.

Example 8.1: Costs d pipelining: Consider the floaing point multiply
example di scussed above. With the use of pipelining, the goeed of the sys-
tem was doubted. What costs ar e associated with this speed increase?

Many different costs are associated with various desgns. so we will
identify only two: board space and power. The chip count is indicative of
the amount of logic required by the system, and using board space isa more
accurate measure of how "'big" the system becomes. It isdso indicativeof
how good the job of subdividing the system has been done. Another view
of the system being used for this example is shown in Figure 811. The
basic parts that could be usad in a TTL implementation are identified with
each mgor section. A summary of the parts needed is

Parr Unit Area Tor. Area Unit Power Toral Power
Name Quantity {sq. in.} {(sq. in.) (W) (W)
255558 9 147 1323 14 126
T4AS881 % 52 87 675 24.3
74AS882 4 52 208 36 14
T4AS182 1 .3 .36 1 1
74AS157 6 .35 216 .1 6
36.55 39.04

The totd areaneeded by this system is 36.55 sguare inches, usng DP pack-
ages. A system that usad leadless chip carriers would be smaller, but the

Input Input
i Van Partial Product
Formation
9 of 258558
Adder Tree
32 - 881
1-182
4-882
Exponent Adjust Post Normalize
2 -881 6 of 157
Output Output

Figure 8.11. IC Requirements fa the Hardware Floating
Point Unit.

Chap. 8: Pipelined Systems: Low Level Parallelism 415

sane nat hod of comparisonwould apply. We will assume that the registers
bet ween stages will be comprised of 74AS574s, which are 20 pin chips.
Counting all of the lines that need to be saved from partial product forma-
tion to the adder tree (andt he corresponding exponent), there are 153 bits of
{nformation t0 save. And between the adder tree and postnormalization
there are an additional 33 hits. Thus, 25 register chips are needed, which
will requirean additional 11 square inchesof space.

The power required by the devicesis similarto the board space. The
overall power for the unpipelined version is 39.04 watts. The register chips
will requirean additional 0.395 wattseach. for a total of 9.875 watts. Thus.
the speedup by a factor of two has caused an increase of board space of
30%. and an increase of power of 25%. For a resource investment of
25-30% the rate of operation of the floating point multiplier has been dou-
bled.

The above example underscores some of the promises and pitfallsof pipe-
lining. The originad process was divided into three separate functions. bur the
speedup was not three. Because of the red effect of adding registers, and the
requirement that the clock cycle time be the maximum of the times for each of the
individual functions. the resulting operational rate was twice the origina rate.
Thus, the actual maximum speedup is a function of dl of the factorsinvolved in
the design of the system.

One of the basic tenets of pipelining is that to achieve the maximum avail-
able speedup (T / {T5 + T 1) the pipeline must be kept full. To achievethis. the
pieces of the "Daa System"” shown in Figure 3.5 must supply the appropriate
operandsin a timely fashion. and also handle the results as they become available.
For the example system shown above, this means that every 180 nsec, two 4-byte
operands must be made available to the floating point unit, and one Chyte
operand must be removed. This leads to a data rate of 12 bytes/180 nsec = 666
Mbytes/sec. If this data rate can be sustained, then the floating point unit is capa-
ble of achieving an operation rate of 555 MFLOPs. Therate of operation for the
pipelined system istwi ce the rate of the unpipelined system. S0 to maintain the
advantage of the speedup available with the pipelined implementation, the data
system must be capable of handling information & a rate of 133.3 Mbytes/sec.
TH's places a severe restriction on the types of information systems that can effec-
tively be utilized by systems with data pipelines.

Example 8.2: Data rates for pipelined systems: The CRAY-2 computer sys-
tem has a clock cycle time of 4.1 nsec. Assuming a single daa pipeline
system, what is the data rate necessary to keep a pipelinefull?

A single pipelinewill be full when two input operands and one result
are handled in each data cycle. The CRAY-2 system, as wel as other
scientific systems, has a word width of 64 bits, or 8 bytes. Thus, for afull
pipe. 3 x 8 = 24 bytes must be handled every 4.1 nsec. Thisis a data rate
of 5854 Mbytes/sec. To achieve thesedata rates, multibank memories, wide
dat a paths, and short transfer times are required.

As we have seen, the effectivenessof data pipelines is limited by several
factors involved in real machines, such as the divisibility of the original process,
the addition of registers to the system, and the problems associated with transfer-
ring information at the high data rates nesded to keep a pipe full. In addition to

Né Chap. 8: Pipelined Systems: Low Levd Paratlelism

the problem of physically supplying the information, there is a problem with the
availability of the correct information. That is, even with a data system capable
of extremely high data rates, there will be a problem when 0 m operation cannot
enter the pipe becauseof data conflicts. Dataconflictswill occur whent he results
of one operationare needed by afollowing operation. Consider the following pair
of operations:

A
D

BxC
AXE

The value of A is needed before the second operation can proceed. This same
behavior is also observed in some array operations:

for(I=1:1<1000; 1++)
X[=X{1-1]+Y([I];

In this operation, the calculation for X{9] cannot proceed until the value for X[8]
has been obtained, and so on. Both of these operationsexemplify the fact that a
deta calculation cannot proceed because a valueis not available. The calculation
that follows cannot proceed until the data from the preceding operation has been
made available. Thus, the pipeline must halt until the data is ready, a which
point it can proceed. This reduces the effective speedup, and hence it is a situa-
tion to be avoided as much as possible.

One observation about the interaction between the pipeline and the data pro-
cessing concerns the length of the pipe. The longer the pipe, the longer it will
take to get information from a previous operation. That is, if a process is subdi-
vided into three sections. then the largest number of clock cycles needed to obtain
a previous result is two. However, if the same process is divided into six sec-
tions. then up to five clock cycles can be needed to obtain the results of a previ-
ous calculation. Thus, two different arguments can be made for the optimal
number of stages in a pipeline: for a |large speedup, dividet he initial processinto
nany sections; to minimizet he penaty of data conflicts, keep the number of sec-
tions small. The designer must thentrade off t he benefits and costs of processing
with adata pipeline.

Anocther observation concerning the effective use of data pipelines deas
with the operandsused in the caiculations. So long as the operandsare indepen-
dent, there is no possibility of pendties due to data conflicts. Thus, streams of
operations constructed in such a fashion as to minimize the data conflicts will
result in the highest performance. The guaranteed independence of vector
operands is the mechanism usad by vector machines to achieve very high data
rates. For example, consider the problem of addii g two linear arrays of informa-
tion together. The organizationof the data into arrays corresponds to storing the
informationinto vectors, where a vector is an organizedset of daa The addition
of the two arrays is then accomplished by streaming the information out of the
storage locations to the arithmetic uit, and the results back again. Such an
arrangement is shown in Figure 8.12 The two input operands actually consist o
N pairs of numbersto be added. And the result consists of N numbers. each of
which isthe sum of the comresponding elements from the original vectors. Since
al elementsof the vector are available beforet he operation begins, the processing
unit can processinformation without any conflicts.

Chap. 8 Pipelined Systems: Low Level Parallelism 417

418

Operand storage in
Memory or Vector Registers

_—
T Data
Add Unit G
R
N Values
IData
nput:
Opeéand -
N Vaues

Figure812. ProcessingInformation with Vectors Vector Addition.

The location of the vectorsA, 8, and R is dependent on the type of instruc-
tion level architecture used by the vector machine. One mechanism is to hold all
of the vectors in memory. and stream the operands to the functiona units directly
from memory, and return the results 1o memory. This 15 @ memory-to-memorv
architecture. and was the design mechanism used. for example. in the Cyber 205
vector machine. The instruction must then identify the locationsof the vectors in
memory and the length of the vectors (how many numbersin each).

A more common mechanism is to use vector registers. a concept similar to
the use of genera purpose register sets in a''standard"" general purpose machine.
The operands for vector instructionsare then supplied directly framhi gh speed
registers, and the results also stored in the registers. The vector instructions for
this type of a machine need not identify memory locations. which require long
addresses. but rather vector registers, which can be specified with a few bits
However, beforet he vectors can be combined from the registers the vectors must
be moved there from memory. This type of architecture balancesthe probability
that the information in the vectors can be used more than once before memory
interaction is needed with the additional instructionsrequired to transfer the data
to and from memory.

Regardlessof the mechanisms used for storage df the vector operands, one
of the reasons that vector machines achieve high operationa rates is the
guaranteed independenceof the operands being sent to the arithmetic units. The
operand independence ensures that the pipeline will be kept full, and that there
will be no data conflicts. This situation leads to the highest computational rates
achievableby a pipelined machine,

Example 83: Pipdinesin a vecror system: The CRAY-1 computer system
was one of the first ""popular* vector machines, and made extensive use d
data pipelines to provide high computation rates. Qher members of the
CRAY family have added multiprocessing capabilities to the system, and
extended some of the features available to the user. What are t he data pipe-
lines used in the CRAY-2 computer system? What ist he peak floating point
operation ratefor the system?

Chap. 8 Pipelined Systems: Low Level Parallelism

The CRAY-2 computer is actualy a multiprocessingsystem, with four
processorsavailablefor useon programs. A block diagram of one computa-
tional section of a CRAY-2 is shown in Figure 8.13. As can be seen from
the diagram. this system is not a memory-to-memory architecture. Informa-
tion is transferred from the memory system to the vector registers(or scaar
registers), and al arithmeticis done in the registers. Nine different data
pipelines are availablefor usein the system, and they an:

Data Fpe H pe Sections

Address add

Address multiply
Scaar integer

Scdar shift

Scdar logical

Vedtor integer

Vector logicd

Hoeting paint add
Floating potnt multiply

The complexity of the arithmetic to be done determines the number of sec-
tions required in the pipe for that arithmetic unit. The simpler operations
listed in the table result in pipelines containing fewer sections than the more
complex operations. The vector registers are each capable of storing 64
numbers, and so the vector instructions can operate 0N sets ot data contan-
ing up to 64 values (vector length < 64). Longer vectors must be divided
into sectionsof 64 elementsor less.

When vector operands an being supplied to a pipelined functional
unit, a new result is generated at the rateof one valueeach 4.1 nsec, Thisis
a computational rate of 2439 Mflops. When circumstances permit. two
functional unitscan be utilized simultaneously, which gives a computational
rate of 487.8 Mflops.

As we have seen, the time required for a pipeline section is dependent on
several factors. We have partitioned the function performed in a section into two
parts: the arithmetic or logical portion, and the storage or register function. In
genera, a designer will attempt to minimize the time required for both of these
portions, S0 that the system will have a small clock cycle time. This situation is
shown in Figure 8.14. Since any combinational function can be formed in two
gate delays, if enough gates with a high enough fan in are used, a tradeoff is per-
formed between the number of levels of logic and the total amount of gating
required to accomplisht he function. This may result in implementations that util-
ize many gate delays to accomplish their work, but that an beneficial because of a
small gate count (or silicon area). The output of the function is directed to the
storageelement to be sent to the next section of t he pipeline.

The ingenuity of the designer in using the available logic has a direct impact
on the performance of the system. For example, consider the circuit shown in
Figure8.15(a). The logic portion isa two level gating circuit that implementsthe
sum function, given proper logic levelsfor the two inputsandthe carry. Theout-
put from this gating systemisd i i toa gated latch. Vien the CLOCK-H line
iSasserted, t he output will be set to agree with the level of t he sum network. The
total delay through this circuit. if the clock line is asserted, is six gate delays.

Chap. 8 Pipelined Systems: Low Level Paralielism 419

However, since this is a gated laich rather than an edge-triggered register, care
must be taken to be sure that the value does not propagate too far while the clock
is asserted.

The amount of time required for the sum and register functions of Figure
8.15(a) can be reduced by combining the sum logic with the latching logic. The
function of Figure 8.15(a) is accomplished by the logic of Figure 8.15(b), vith
sone obvious changes. The ORing function of the logic has been combined vith
the ORing function of the latching gates, axd the ANDing function of the gated
latch has been combined with the ANDing gates of the required logic function.
The net result is a system that requires only three gate delays to complete, from
clock and data stable to outputs stable. Note that both asserted high and asserted
low outputs are availablein the Figure 8.15(b). This will be useful for functions
that follow thisstage in the pipe.

Obvioudly, it would not be reasonableto combine all of the logic of astage
of a pipeline with the latching function, but the mechanism shown above of com-
bining one level of the logic with the latch will reduce the timing impact of
adding the latching function to the logic required by the function.

One of the disadvantages of the latches implemented in Figure 8.15 is that
the time to output stable from theclock is net awaysequal. That is, the required
time for the data to become stable is a function not only of logic input and the
clock, but it is also a function of the level stored in the latch before the assertion
of the clock. Consider the four possible combinations of the input data {LAT _IN-
H in Figure 8.15(¢a)] and latch output:

LAT IN-H OUT-H Delayfrom CLOCK-H

0 0 No chenge = zero dday
0 1 2 gate ddays

1 0 3 gate ddays

I 1

No change=zero delay

This difference in time required for the function results in an unwanted skew in
the time for a section of logic. With latches designed as shown in Figure 8.15,
the problemwill alwaysexist.

A number of different solutionstothe problem have been suggested, one of
which is the Earle Latch. which was usad extensively in the | BV 360 pipelined
machines. This latch is shown in Figure 8.16¢a). One obvious differenceis that
the latch does not need (nor does it provide) both asserted high and assarted low
inputsto function properly. If we repeat the above table to identify the speeds of
the Earle Latch, we have:

LATIN-H OUTH Ddayfrom CLOCK-H

0 0 Nochange= zero delay
0 1 2 gate delays
1 0 2 gate delays
t 1 No change=zer o delay

Chap. 8 Pipelined Systems: Low Level Parallelism

Thus the maximum ti ne to data stable is always two gate delays, assuming that
the propagation ti nE t hrough a gate isalwayst he same. The only major difficulty
with the system shown in Figure 8.16 is that both asserted high and asserted low
clocksarerequired Thisrequirement is not restrictive sincet he clock signalswill
be needed by all of t he stages.

CLOCK-H C

DATAH g T
CLOCK-L IDO—J

CLOCK-H

:},__

-

Ba

111

|

|

|

CLOCK-L ID)————

Figure 8.16. Earl Latch Designs: (a) Basic Latch;
(b) Combined Latch and Logic.

Chap. 8: Pipelined Systems: LoV Level Paralielism 423

The technique applied above of combining the logic of the function with t he
logic of the latch can also be utilized with the Earle Latch. The sum function of
Figure 8.15 is combined with the Ead Latch as shown in Figure 8.16(b). Agan.
the designer must identify which combination of function and latch logic, with
their associated costs (number of gates, or semiconductor arsa, Or ...), Nat ches the
desi gn goalsof t he sysem.

The u of pipelining techniquesto speed Upthe processing of data manipu-
lations results in enhanced throughput for data operations. The operationsthet
must be performed are identified, and these are partitioned into appropriate sec-
tios. Storage elements are inserted between the sections tO synchronize the
actionsd the system and to hold the dataneeded by the sectionsthet follow. The
performanceachievable by the use of pipelining is a function of many factors, as
we haveseen. The divishility o the origind process, the register delays, and the
amount of availablelogic dl influence the badc data rate & which the pipe can
operate. Externa influences that affect the operation of the pipe include the
independence of the operands needed by the function, and the ability of the sys-
tem to handle data a a sufficiently high rate to keep the pipeline full. A system
that satisfies the interna and externd requirementsfor correctnessand data move-
ment can achieve subgtantial speed improvementsover nonpipelined implementa-
tions.

Example 8.4: Pipelining in data svstems: The concept of pipelining for data
operdtions can he usad in mav goplications where an increase of oeed is
needed. even if the operationsdo nat lend themsalvesto divison. Consider
a hardware sysem congtructed to calculate the fast fourier ransform (FFT),
as shown in Figure8.17(a). Can pipelining be usad to increese the speed of
operationof the system?

In the system depicted in Figure 8.17(a), the data is stored in a
memory and extracted as needed to perform the calculations. The arithmetic
isperformed in aset of specia purpose hardware. One method for calculat-
ing the butterfly is shown in the dat a diagram: two values(Dy and D) form
the inputs. and the outputs (Dy and D}) are returmed to the memory. The
values are complex in nature, and as such consist of two parts, the redl and
the imaginary. The arithmetic involved consistsof a complex multiply, a
complex add. and a complex subtract. The weighting factor (W) is derived
from a set of condants, ad supplied by a memory not shown in the
diagram. The complex arithmetic required by each set of butterfly calcula-
tions can be accomplished by four multiplications and six additions. With
memory transactions, additions, and multiplications all requiring about the
sane amount of time, the system isfairly well matched at this point. That
is, each butterfly will require a minimum of eight cycles, since that much
time is required to extract a red and imaginary vaue for each of Dy and Dy,
and place the calculated values back into memory. For six of the eght
cycles the adder will be busy, and for four of the eight cycles the multiplier
will be busy.

Pipelining can be gpplied to this system by recognizing that the FFT
requires a number of passes through the dataset The number 0f passes is
logy N, where N isthe tota number of data points, and dso a factor of 2
The resuits of one pass form the information nesded by the next pass.
Thus, the basi s for a pipeline exists, since t he datais to be passed from one

Chap. 8: Pipelined Systems: Low Level Paratielism

Memay Memay

FFT System

] Butery 0y Oy

Hardware

Computation ion v} D’
caiculates new vglcrxﬂes 0 L L

Butterfly
Hardware

Butterfly
Hardware

83.

e returned to memory
(@)

Memary Memary Memary Memary Memary Memary Memary

Butterfly Bunafly Butterfly Butterfly Butterfly Butterfly
Hadwae Hadwae Hadwae Hadwae Hadwae Hardwae

(o)

Figure817. Fast Fourier Transform Sysems (&) Nonpipelined Implementation;
(b) Pipelined Implementation.

module to another, where each module is responsible for one pass of the
butterfly through the data This arrangement is depicted in Figure 8.17(b)
for a system which computes a 256 point transform. Eight stages are
nesded, and the memory output fnnn one stage feedsthe memory input of
the next stage. The memoriesare depicted as duas. sincethe information
will beinput by one stage and extracted fnnn the next. Thus, the memories
must either "ping-pong" between two sections, or be interleaved in such a
way that the desired information is available as needed.

Pipelining as shown inthe figure will produce resultseight times fas-
ter than a nonpipelined implementation, but requires eight times as much
hardware. Nevertheless, if the speed is needed to maintain real time opera-
tion, thent he hardware resources may be justified.

Control Pipelines: Overlap of Independent Control Operations

Inthe preceding section we looked at improving t he speed of data operations by
executing different, independent portions of the calculationsat the sane time in
specifically designed portions of hardware. The principal requirement for correct
functionality is that the operations be independent one stage of the pipe cannot
produce correct results until all of the input information is correct. Pipelining is
dso applicableto other types of processing, so long as t he independencerequire-
ment is satisfied, and the necessary processing can be appropriately partitioned.

Chap. 8: Pipelined System:Low Level Parallelism

In this section we will examine some of the mechanisms for pipelining control
functions, and identify some of the limitationsof the achievable performance.

Asdiscussed in Chapter 4, a stored program computer basicaly operateson
a fetch-decode-execute mechanism. An instruction is fetched from memory,
decoded, and then the work specified by that ingtruction is executed. These
processes are sequential in nature, and basically independent. S0 they satisfy the
fundamental requirements for pipelining. The responsibility of the designer and
system architect is t0 organize the data paths and registersin such a way that the
variousfunctionscan be executed concurrently. If this can be accomplished, then
the same type of speedup enjoyed by the data pipes of the preceding section can
be redlized.

One of the simplest pipelines o this nature is demonstrated by the fetch-
execute mechanism of microcoded engines, one example of which is shown in
Figure 5.31. This is shown in block diagram form in Figure 8.18. The address
sequencer has the responsibility of identifying the next microinstruction to exe-
cute. and obtaining that instruction from microcode memory. This instruction is
loaded into the microinstruction register. During the next clock cycle. the execute
section will decode the control bits contained in the microinstruction register and
perform the requested work. These two functions form a two stage pipeline, since
the fetch section is always obtaining the instruction one clock period before the
execute section performs the work. For this reason, the microinstruction register
is sometimes referred to as the ' pipeline register."

Each of the basic processes of instruction execution can he divided further
than the microcode engine example. and many machines uiilize this technique
internal to the control umit. We will partition the activitiesof a control unit into
the six units shown in Figure 8.19. These units have the following responsibili-
ties:

Fetch Section
Address. Do
Sequencer F—- M i i Memory
S S S SO A S A e Pipeline
[Microinstruction Register " Register
S | IR
X 2 K 2 (2 L2 ¥ k2 2

|
T ml

Daa Manipuldion Hardware ‘

Execute Section

Figure 818. Fetch-ExecuteMechaniam of a Pipelined Engine.

Chap. 8: Pipelined Systems: Low Level Parallelism

Memory System

. . High Speed Storage
Insgygtion ‘ (Cgheand Regis;tagrs)
Decode COSeneratde] Jperend] Execut — Store
— an e
Fetch A%%rress

Figure 8.19. Block Diagram d Control Pipdine for Basic Machine

Memory Svstem: The memory system contains all of the memory utilized by
‘the computer system. This includes the mass storage devices as well as the
main store. This portion of the system is responsible for providing the needed
instructions and data s rapidly as possible.

High Speed Storage: The high speed storage section contains both the cache
memory and the registers utilized by the system. The active data is stored in
such a way that it is availableas needed by the program. Inthe discussions
that follow, the high speed storage section will be considered perfect. This is
not a reasonable assumption in real systems, but will facilitate understanding of
the issues related to the pipeline. and mov e from considerationt he problems
resulting from the interactionof the pipeline with an imperfect nenory system.

Instruction Buffer: The instruction buffer is a small storage area that contains
the instructions currently executing. This storage area is managed by the
instruction fetch hardware, and contains the active portion of the currently exe-
cuting program. Real sizes of ingtruction buffers vary with manufacturer and
purpose from a few bytesto afew kilobytes. The information contained in the
instruction buffer may come from directly from the memory system, or it may
be provided by the cache memory. As with the high gpeed storage, we will
assume that the instruction buffer is perfect, so that any information needed by
the instruction fetch unit isimmediately available.

Instruction Fetch: Instructions needed by the program are obtained by the
instruction fetch section. This unit identifies the next instruction to execute and
presents it tothe decode section.

Decode The decode section obtains an instruction from the instruction fetch
unit and identifiesthe work to be done. It then prepares the information t hat
will be used by succeeding sections to identify operands and actions, and these
bitswill be forwarded tothe sectionsas required by t he instruction flow.

Chap. 8 Pipelined Systems: Low Leve Parallelism 427

e Generate Operand Address: This unit is responsible for identifying addresses
of operands. For example, in the two address move instruction:

MOV *R1, RO

data is moved fran memory to RO. The generate operand address section
would identify thefact that Rt contains an address, and provide that address to
the high speed storage section. More complicated addressing mechanismsare
possible, and this section of the pipe must be able to provide the requested
address. Any address generated by this section of the pipe will be utilized by
the next pipe section to obtain the required data.

e Fetch Operand: The fetch operand unit identifies the location of the data
needed by the instruction, and fetches tha information fmm the high speed
storage unit. The data is availableto be utilized by the functional units in the
data path during the cycle controlled by the execute section.

Execute: The execute unit has the responsibility of doing the work called for by
the instruction. The previous sections of the pipe will have prepared the data
and so both data and instruction information will be available. The result of
the instructionwill be provided to the store unit to be saved as needed.

e Store: The store unit takes the information resulting from the execution of the
instruction and saves it as necessary in the high speed storage unit. Thus, any

necessary modificationsto registers or memory locations are performed by the
store unit.

With the original process divided into SX sections, it would appear that we
should be able to get a speed up of six over a nonpipelined implementation. As
we have seen with the data pipes, this will not be the case for various reasons: the
process will not be equally divisible into six sections; the delays caused by regis-
ters adds a rea increment of time to the process, and increased speed of data
transfers may not be physicaly possible. However, if we assume that solutionsto
these problems have been provided, then we can envision the execution of the
instructionsas shown in Figure 820. This is essentially the same as Figure 85,
but we have added a few more instructions. The reason for this will become evi-
dent in the following paragraphs. As with thedata pipe, there is an inherentdelay
caused by the variousstages of the pipe, and instructions will require a time (Ty)
to complete. If instructions can be inserted into the pipe on each clock, then the
effectiveinstruction time will equal the clock cycletime.

T
Store t{2{3]a]s]s 9 [1w0] 1] 12
Execute 1234|567 0] 1] 12
Opr Fetch 1]2l3]a|s][ej7]8 1011} 12
Opr Addr 2|3]afs[e|7 8]0 0[]
Decode 3[4|s5]e{7]8]af10]1n]2
Fetch | 1 4|56 |7]8]o]t0f11]12

Figure 8.20. Space T i Representation of Instructions in Control Pipe.

Chap. 8 Pipselined Systems: Low Level Porailelism

Store
Execute
Opr Fetch
Opr Addr

Asdde from the physicd problemsthat we have assumed can be handled in a
reasonable Way by a complex hardware system, the conflict problem limits the
achievableperformance, With adata pipe, we used the term "*conflict” to describe
the case when one operation could nat proceed because it needed information
from an operation that had not yet completed. Instructions in a pipe interact with
one ancther in much the same way, which prevents the pipe from remaining full
at al imes We will describet hree different typesof conflicts

o A data conflict
® An address conflict
A branch conflict

1 Asin adaa pipe a data conflict results when one ingdruction cannot
proceed because an operand is neaded that is the result of a previousingtruction,
and that instruction hes nat yet completed. For example. consider the following
st o indructions:

ADD RQ R3
MOV R R7
ADD RO, RS
ADD B R4
SUB R8. R9
MOV RI. R2
ADD RI. R3
ADD R R6

N oW WN =

The flow of these ingructionsthrough the pipeline is shown in Figure82L The
first three ingtructions have no difficulty executing, assuming that all of the infor-
mation initidly needed is available. However, there is a conflict between instruc-
tion 3 and instruction 4: t he work specified by ingtruction 4 isto add the contents
o RS tothe contents of R4; however, before thiscan oceur, ingruction 3 must
first modiify the contents of RS Thus. the operand fetch section o the pipe will
be unableto fetch the desired value until the store section of the pipe has placed
the result of instruction 3 intothe register. Thi S results inthe two penalty cycles
shown in Figure 821. The ingructions waiting in the pipeline pause until the
request Can be stisfied. and then procesd. Similarly. ingtruction 8 cdl |ides with
instruction 6. When indruction 6 has modified R2, then ingtruction 8 can obtain
the value and procesd. However, as shown in the figure, Since thers is an
independent ingtruction between 6 and 8, the effective pendty incurred is only
one cycleinstead of two.

1213 4 5867 8
1213 4|s5]6l7 8
112i3|P|pP2la|s|e|7]P]s
1{2]3]sals)|s|s]e]l7]s
‘2|34 ;5|6|6|6]7]s
3|a|s5|6]7)]7]7]8

Figure 8.21. Penalties Associated with Data Conflicts.

Chap. 8: Pipelined Systems: Low Level Paralielism

The analysisof t he effectiveexecution rate is performed int he same manner
as the analysisof the pauses which were discussed in the previous section. In
fact, t he resulting formulawill havet he same form:

Effective speedup = ??i#f:%

Here p; is the probability that then will b¢ a conflict. and P; isthe penaity associ-
ated with that conflict. Figure 8.21 identifies a conflict with a penalty of two
clock cycles, and a conflict with a pendlty of oneclock cycle. A plotof the above
equation iS shown in Figure 822. Curves are included for the case when all
conflicts incur two penaty cyclesand the case in which all conflictsrequirea sin-
glecycle. In practice, the actual pendty incurred because of conflictsin a system
of this type would result from a combination of conflicts that incur bath pendlties,
and hence a line representing the effective conflict penaty would be found
between the two lines in the figure. Obvioudy, it is beneficia to reduce the
required number of pendty cycles, and we will identify some mechanismsfor
doing that |ater in this section.

Speedup
60 —x
50
N For P =1
40 AN Vi
N /
\
3.0
\
P \\
20 ForP =2/
1.0
0.0
00 02 04 06 08 1.0

p. Probability of Collision

Figure 8.22. Effect of Conflicts on Speedup

Chap. 8: Pipelined Systems: LowLevel Parailelism

The pipeline must be designed in such a way that the resources needed by
each ingruction are properly coordinated. Two instructions that use the same
resource, such as a register, can either read or write to the resource. This gives
riseto four possibleorderings:

First Second

Instruction Instruction Conflict Handling
READ READ No conflict; instructions need not coordinate access to resource.
READ F i t indruction mugt obtain correct value before second

instruction is dlowed to modify it.
VR TE READ Seoond instruction must wait until firgt ingruction has
gppropriatdy modified resource before obtaining the value

WRITE WRITE Sequence corfflict only. The control MUt assure thet the vdue
d the resourceiis that st by the ssoond ingtruction.

The control system must examine the resources being utilized and the ordering of
the instructions, and assure that the resultsare compatible with an implementation
that does not make use of pipelining. Therefore, the control unit of the pipeline
must coordinatethe use of the resourcesidentified by the instruction set; indepen-
dent resources need no specia care, while resources utilized by more than one
instruction need to be closely monitored. Thus, the control unit becomes more
complex as the amount of overlap increases, which results in a pipeline which
contams more slugcx

2. Like a data conflict, an address conflict results because of the unavaila-
bility of information. However, rather than a pendlty that is the result of unavaila-
bility of data, the address conflict occurs because the system cannot generate the
address of the data In the organization of the system as shown in Figure 819,
the generate operand address block has the responsibility of identifying the loca-
tion of the data. If the location of the information is specified by valuesthat have
not yet been updated, then the system must wait until that information is avail-
able. For example, consider thefollowing set of indtructions:

1 MOV RI R9

2 MOV constant, R8
3 INC RO

4 MOV (R7iR0), R6
5 ADD R4 R3

6 ADD (R6), R2

The resource utilization diagram corresponding to these instructionsis shown in
Figure 823. Instruction 4 moves a value to R6; the location of that value is
identified by indexing R7 by R0 However, instruction 3 incrementsR) There-
fore, the value contained in RO cannot be used in the calculation of the address
uitil it has been modified by instruction 3 This causes a penalty that is one
gregter than the data conflict penalty. The conflict bet ween instruction 3 and
instruction 4 causes a penalty of three clock times, while the conflict between
instruction 4 and instruction 6 incurs apenalty of tvo clock times. The anaysis
of the effect on the overall speedup procseds exactly as t he above analysisof data
conflict effects, exceptthat the pendties are larger.

3. Branch conflicts occur for the sane reasons as other conflicts: the infor-
mation needed is not available. However, the penalty for branch conflicts is

Chap. 8: Pipelined /st ens: Low Level Paratlelism 431

Opr Fetch
Opr Addr

P3| 4 {5 {PL|P2] 6

Fetch | 1

Sl =
niajWwin| -
0
-

(5]
»n{o
(<
»

Execute
Opr Fetch
Opr Addr

Figure 8.23, Penalties Assodiated with Address Conflicts.

greater than the other types, since the fetch and decode portions of the pipe occur
firs. When a conditional branch occurs, the instruction to be executed next is not
known until the target of the branch is properly identified. That is, since the con-
dition on which the branch will be made is not available, it is not certain whether
or not the branch will be taken. For example. consider the following instructions:

fabel ADD R3,R4
SUB R3,R9
MOV R4. (R7iRl)
CMP RI1,R3
INE labe
ADD R0.R1

OO W —

Instruction 5 determines whether the program flow returns to ingtruction 1 or
moves on to indruction 6. However, the condition on which that decision is
based is not available until the comparisonof R1 and R3 (instruction 4) is accom-
plished, and the result of that comparison has been placed in the status register.
The resourceutilization for thisingtruction is shown in Figurs 8.24 for one imple-
mentation and branch path. Other implementationswill incur different costs. and
different branch paths will result in different resource utilizations. As shown in
the figure, t he system does not know which instruction follows instruction 5 until
instruction4 completes. This resultsin a penalty of four clock times

As we have seen, conflicts in a control pipeline result when information is
not available becausethe action specified by prior instructions has not been com-
pleted. Dda conflicts occur because an instruction needs data theat will not be
available util a previous instruction completes. Address conflictsoccur when an
instruction cannot calculate the address of a deta reference because the informa-
tion needed to identify an address will not be availableuntil a previousinstruction

23] 4 8 A
3|4

-

nlin|l®@IN] -
-

PtiP3|P3|Pal 8

Feich | 1

nidiWN] -

Sl N] -

Figure 8.24. Branch Conflict Penalty fa One System Implementation.

Chap. 8 Pipelined Systemns: Low Level Parallelism

completes. And branch conflicts occur when the next ingtruction to execute will
not be known until t he resultsof a previousingdructionare avaladle.

A number of techniques have been utilized to minimize the overall effect of
conflicts. and we will examine four of the methods. Each of the methodsuses a
different nechani Smto reduce the resource utilization, but the god is the ssme
mn mMze penalty cyclesdue to conflicts.

The first technique haslittle to do with hardware and much to do with the
way that the program is configured for the machine. \We have seen that the effect
of the conflicts is minimized when the ingtructions are independent. Thus, one
method to reduce the overdl effect of conflictsis to arrange the ingructionsin an
order that will result in the same answers, but that will execute faster. For an
example o this technique, consider the Smple statements:

VX = VCC +(RES1 + RES2) x [1
VY = VCC+(RES3+ RESA) x 12

If we assume that these ingtructionsare to be executed by a machine of the type
that we have been discussing, then a very smple trandation o the above state-
ments into an assembly language might produce code similar to:

I MOV #vCC>, RO (& VvCC toRO.

2 MOV #<RES1> Rt G RESI tORI.

3 MOV #<RES2>,R2 GA RES2 tOR2.

4 ADDRI.R2 Add RES! and RES2.
S MULT #<liI>. K? Multiply by (1.

6 ADDKO K? Add 1 vCC.

7 MOV R2.@<vX> Soreredtin vx.

8 MOV #<RES3> R3 Get RES3 tOR3.

9 MOV #<RES4>, R4 Get RES4 to Rl
10 ADDR3, R4 Add RES3 and RES4.
Il MULT #I2>, R4 Multiply by 12.
12 ADDRO. R4 Add in vcc.

13 MOV R4, @<VY> Store result in W.

Thisisa very smpleset of code, yet it containsa number of data conflicts, If the
code isexecuted as it gppears above, then the resource utilization would appear as
shown in Figure 8.25(a). The indructions tha cause conflicts are instructions 4,
5,6,7, 10, 11, 12, and 13. Sincedl of the conflictsare data conflicts, they each
incur a pendty of two clock times. The resulting time to completet he code seg-
nert, not including the fill time, is 29 cycles.

If sone information is available about the organization of the pipdine. then
appropriate choices can be made concerning the methods used by the assembly
language implementationsof the high level language statementslike those shown
above. By optimizing the order to help the conflict problem, then the tire
required to executet he code segment will decresse. In Figure 8.25(b), the same
set of instructions is executed, but not in the order specified above. Rither, the
order is specified in such a way as to guarantes that the operandsare ready when
nesded by instructions which follow. In this way, the time required to wait fa
operands is minimized. The results of the caculaion will be the same as those
shown in Figure 8.25(a), but the number of cycles required has >¢zn reduced to
16 cycles. Niticethat independent instructions could be inserted into three spaces
in the figure. If this were to be accomplished. then the pipeline would be func-
tioningd maximum efficiency.

Chap. 8 Pipelined Systems: Low Level Parallelism

SIIYUODBZIIUIN 0 pasa
3dung (g) s1U0D FIve

)y suonannsuy (g) ‘suonsnnsuy Jo Juswebue 1y
14 9P0D J04 UOITEZ||1)N 32MmosdY ‘§T'8D.nD14

(@
et Jefer] To[us] [sfor[s|v]s 2 | yrey
erf jefa| [olws| Jsfor[e[v]6]s epooeq
et [efe] [o]er] Tsfor|e]v[s]e]e oy KO
er| [zfex]| Tolw]| Jsfor[e]vfs[e]e]z wie4 140
€1 L |2t 9 |4t slor|s|r]6i81€E |2 ejnvexy
[evf [efzt] [o]se] Jsfot|s|r|6fe[e|2 asns
? s0pkD 91 I||||.._
(e)
etferferfer]ir]orJorfor]e [eJe[ee[sfz]zlc]o]s |y L | ureq
er]erferfat]er]zrfrilor]s |6 6|]efajelz]z]o]o]o]s|v]e epoosq
grjerfetizeiet|et|jrrfsrjor|e g |88 |2]2{L|9]|9]|9jSiS|s|v|€|e ippy 1dO
tiled|va et [ed [td |t [zd|id ot fed [1d] 6 (8 | 2 [ed[ta] 0 [ed|rd] s jea]td] ¥ [ea|ra|e |2 |1 wie4 1o
€l 2 1 ot 68|z 9 S v tlz] einoexg
€l 2t L ot 6|8z 9 S v ezt o015
| ‘
I s2oAD 62

Example 85 Pipeline speedupsfor real systems: The effective speedup of
a pipelineis a function of the probability of conflictand the pendty of tha
conflict. For the pipeline as shown in Figure 825, is t he formula a resson-
able representation of the actua speedup?

S i wean assuming ideaf conditions. we will assume thet execution
of the imstructions in a nonpipelined system will require six cycles per
imstruction Thus, the 13 instructions of the code segment will require 78
cyclesto complete. If the pipeline is kept full, and there are no conflicts,
we would expect a speedup of six. Fmm t he code segment and from Figure
8.25(a), we identify thet 8 instructions cause conflicts, and that the pendty
of eechis2 cycles. Thus,

: _ Bedt speedup
Effective speedup T +pxP
6

i a—
I+(‘E)X2

= 2.6896

The analytical approach says that we should see a speedup on the order of
269. Usng the steedy state number of 29 cycles, the speedup o the system
that executes according to the method demonstrated by Figure 8.25(a) is:

Effective speedup = 7—23

= 2.6896

which agress with the calculated speedup. If the instructi ons are reordered
as shown in Figure 8.25(b), then a different calculation is in order. Here
three instructions (11, 12, and 13) have penalties associated with them, and
the pendtiesan only one cyde. Thus,

Best speedup
| +pxP

-5
l+(%)xl

Effectivespeedup=

=4.3875
The act ual time demonstrated by Figure 8.25(b) is 16 cydles

Effectivespesdup = %

= 43875

It is interesting t0 note that the reordering technique, while not modifying
the hardwarein any way, resulted in an increase inthe effectiveness of the

Chop. 8 Pipelined Systems: Low Leve Parallelism 435

Buffer

pipeline from an effective speedup of 2.689 to an effective speedup of
4875. Thisisan increase of 81%.

The reordering scheme can be utilized by those who program the machine &
the assembly languagelevel. But more importantly, the techniquecan be used by
compiler writers to generate code that will executein a minimum amount of time.
For example, one observation conceming the use of system resourcesin theabove
example is that better use could be made of the registers as temporary storage.
By specifying different registers for each temporary variable, the conflictscould
be minimized.

Performance enhancement can be accomplished by reordering since the
technique works to organize the operations in an independent fashion. and
independence leads to operation without conflicts. Another techniqueis to recog-
nize that there will be conflicts in the instruction stream, and to attempt to minim-
ize the pendlty of a contflicts. One way to reduce the time required by many of
the conflictsis to expand the capability of the storage function so that results are
not only stored in acycle. but they ae also made available to other stagesof the
pipe. That is, when the execute unit has completed an operation, the results can
be supplied not only to the store unit, but they can also be provided to the other
elements of the pipeline as needed. e representation of this path is shown in
Figure 826, where the execute unit has a private data path that it can use to
transfer information to other units in the pipeline.

The addition of the feedback path will reduce the pendty of many of the
contlicts by ong cycle. since the pipe sections need not wair until the store unit
places the information nto the memory or a register. The fetch operand section
can obtain the data required for instructions following in the pipe. The generate
operand address section can receive the information needed to specify operand
addresses. And the ingtruction fetch/decode sections can identify the target
address one cycle earlier, since the status information is made available at the
same time that the status register is being updated. The overall effect isto greatly
reduce the cycles consumed by all typesd conflicts.

Example 8.6: Pipeline penalty reduction with internal data path: Assume
that a feedback path exists in a pipelined unit as shown N Figurs 8.26.

High Speed Storage
(Cgche and Regis;tagrs)

i l 1l

Fotoh

Generate

—* _Fetch [~ Execute =% Store
Operand Operand
Address

1 { | |

™ ioma

Data Path

Figure 8.26, Block Diagramof Control Pipeline with Intemal Data Feedback Path.

Chap. 8 Pipelined Systems: Low Level Paralielism

Wha will the effect be on the execution of the assembly language code
usad in t he previous example?

The addition of t he feedback path reducesthe data conflicts penalty by
one cycle, and this should be evident in the graph of resource utilization for
the pipe. The code is repeated herefor convenience:

MOV #VCC>, RO
MOV #<RES1>, R1
MOV #<RES2>, R2
ADD R1, R2
MULT #<Ii> R2
ADD RO.R2

MOV RZ, @<VX>
MOV #<RES3>, R3
MOV #<RES4>, R4
ADD R3. R4
MULT #<12>, R4
ADD RO, R4

MOV R4, @<VY>

BRZSCco~wouhwN e~

The graph of the resource utilization is induded as F gure 8.27. As shoawn
in part a, the Smple, nonoptimized code now executes in 21 cycles, nat

21 Cycles i
Store 1123 4 5 6 9 10 1 12 13|
Execute 112]3 4 5 8 7 9 10 11 12 13
Opr Fetch 1121 3|Pt4|P1|5|P1{6|P1| 7] 8] 9|P110|P1|11|P1]12{P1]|13|
Opr 1{2|3|4|5|5|6|6{7|7|8{8]|9]10{11]11]12]12(13}13
Decode 1 3i4}5|6j68l7|7|8|8]9]|9]|10]{11]12{12]13{13
Fetch!12 4|15l6l7171818|19]9]10(10111]{12(13]13
(@
f——— 13 Cycles ——
Store 2|38 4| 1110165 j11| 6|12] 7 (13
Execute 213819 1110 5[11{ 6 |12{ 7 (13
Opr Fetch 2{3|8|9{4 101 5|11] 6 (12 7 {13
Opr Addr 318|9|4j1]10{5(11|6]12|7[13
Decode 2|13|8|9]4fj1|10]5]|11| 6121713
Fetchlz 9l4j1|1015|11|6{12] 7|13

Figure 8.27. Resource Utilization for Reduced Penalty Data Conflicts: (#) Simple
Arrangement of Instructions; (b) Instructions Reordered to Minimize Conflicts.

Chap. 8 Pipelined Systems: Low Level Parallelism 437

including the fill time. Instructions4, 5, 6, 7, 10, 11, 12, and 13 still incur
pendlties. but now the penalties require only a one cycle delay. The result-

ing speedup becomes:
Effective speedup= B‘ﬁ#ﬁle
=—9
i +(ls—3) x 1
=37

The reduction of the pendty from two cyclesto one cycle has increasedthe
speedup from 2.689 to 3.71, an increase of 38%. And examination of Fig-
ure 8.27(b) indicates that there are no unused cycles, so for the optimized
case the speedup is & a maximum. By including the feedback path, the
reordering technique in will produce results that are more effective than a
system without the ahility to bypass the storage function.

Reordering of instructions can be effective because of the use of indepen-
dent instructions, since independent instructions do not compete for resources.
Enhancing the data transfer capabilitiesof a pipeline to bypass the storage func-
tion reducesthe pendlties associated with al kind of conflicts. As we have seen,
the pendlties associated with the branch conflict are some of the largest pendlties.
so varous technigues have been devised to try to minimize the overall branch
contlict penaty. We will now describe one of these techniques and identify some
of the additional problemscreated by the solution.

The main reason that branch conflicts cause delay is not that the functions
cannot be performed, but rather that the machine docs not how which of the
functions (instructions) are to be done. The correct "'next" instructionfollowing a
conditional branch will not be identified until the conditionon which the branch is
basad is known. However, one method to minimize the overall effect is to nake
aguessasto which of the instruction paths will be followed, and start execution
along that path. Then. if the guess was correct, the pendty reducesto zero.
However, if the guess was not correct, the time penalty will be the same as if no
guess had been made.

To visualize this process, consider a set of instructions similar to those
already examined. We will constructthe set of instructions so that the only delay
is a branch conflict, but with some problems that will demonstratethe added capa-
bilities needed by the pipeline. The following instructionscould be usad to move
datafrom one location to another.

MOV #<FROM> RO ROpointsto source of info.

I

2 MOV #<TO>, R1 R1 points t0 where it goes.

3 MOV #<1024>, R2 R2 iscounter.

4 label MOV *RO+ *Rl+ Move data, bump pointers.

5 DEC R2 Decrement counter,

6 INZ label |f not zero, more data to move.
7 MOV RS, R2 ‘When done moving data, do this.

The pipeline system will make @ guess astothe appropriate next instruction from
6. In this case, it is obvious that 1,023 times the next instructionis located a

Chap. 8: Pipelined Systems: Lov Level Parallelism

Store

Execute
Opr Fetch
Opr Addr

Fetch

"labd," s0 most of the time the correct choice will be ingruction 4. If the
designers of the system findthet the /NZ instruction is indeed found principally at
the end of a loop of this nature, then the system can be designed to assume thet
the branch is taken. Then the resource utilization graph for an iteration of the
loop may appear as shown in Figure 828. The sequenceof instructionsindicated
by the graph assumesthat the next instruction after the jump will be instruction 4.
Thus, that ingruction is initiated, and the pipeline continues as if it were an
unconditional jump. This should cause no problem until the operand fetch portion
of the next ingtruction 4 that is to execute. Instruction 4 causes RO and R1 tO
increment, and if the branch is not taken, the values should not change. There-
fore, a pipeline system that allows a conditional branch to follow one of the paths
must be capable of flushing the pipe of the effects of the instructionsif the path
turns out to be the incorrect action. Thus, the operand fetch portion of the
instruction circled in Figure 8.28 must not cause changes (in RO or R1) until after
the validity of the path has been established.

By dlowing the machine to continue execution. branch prediction tech-
niques alow a system to minimize the time required to wait for conflictsto be
resolved. This resultsin an overall speedup, even if the guesses ae correct for
only a fraction of the ingtructions. The larger the fraction, the greater the
speedup. Thecost of this speed enhancement is the additional hardware needed to
alow the effectsof a branch that should not have been taken to be removed from
the pipe

The final mechanism we will examine is another technique for minimizing
the effect of conditional branches. This technique requires a combination of
hardware and software to be etfective, and hence must be applied in a system
solution. That is. the hardware can provide the capability. but unless the software
(compiler in conjunction with the operating system) makes use of the technique.
no benefit will resuit.

One of the observations made earlier concerning the conditional branch
penaltiesis that the target of the branchis not known until the conditionon which
the branch is based has been resoived. One approach to pipeline implementation
is to cause the action of the system to stop until the condition has been deter-
mined. 9 nce the desired effect of pipelining isto utilize the stagesof t he pipe as
much of the timeas possible, another approach is to design the pipeline in such a
way that the instruction following a conditional branch is alwaysexecuted. With
this technique, an instruction that is alwaysexecuted in the body of a loop can be
placed directly after the conditional branch that determines the end of the loop,
and it will produce the correct results.

1

1]2]3|4als 4|5
123458 5
11203|4]s5]s6|(a)fs
2345|645

3 45|66 45
45|64 5

Figure 8.28. Resource Utilizationfa Pipeline with Branch Guess.

Chap. 8: Pipelined Sygems Low Level Parallelism 439

This technique resultsin more effective utilization of the stages of the pipe-
line, since an independentinstruction is executed during thet i Ne required to iden-
tify the target of a conditional branch. To visualizethis process wnsider the fol-
lowing set of instructions:

1 label ADDRL,R3 Add two regstogether.

2 ADDR2, R4 Add two other regs.

3 INC RO Bump anather reg.

4 CMP R3 RS Do a comparison and if ...
5 BNE label Values are equal, branch.

This code segment may result from a loop in a high level language. Note that
instructions 1, 2, and 3 are executed each iteration of the loop. The result of
applying this techniqueto the pipeline used as an example throughout this section
is shown in Figure 829. Pan a of the figure indicates that the above loop will
execute in 8 cycles. assuming that instruction 5 must wait until the execute por-
tion of instruction 4 determines that the next ingtruction will k instruction
number |. With this assumption, as soon as ingtruction 4 completes the execute
section, ingruction | can begin. Reordering the instructionsto take advantage of
the fact that an instruction following a conditional branch would result in the
resource Utilization shown in part b of the figure. Instruction 3 has been placed

l(— Loop execution in 8 cycles

Store 1 2 3 4 5 1
Execute 1 2 |3 4 5 1
Opr Fetch 1/21}3 5 1
Opr Addr 23] 4 5 1
Decode 3 4 5 P P 1
Fetch | 1 405 1
|-— Loop execution in 7 cycles ——-|
Store 1 2 4 5 3 1
Execute 1 2 5 3 1
Opr Fetch 1 2 5 3 1
Opr Addr 2 4 5§13 1
Decode 4 5 P 3 1
Fewch | 1 533 1

Figure 8.29, Resource Utilization With and Without Using Technique That Always
Executes Instruction After Branch: (3Execution Instructions in “Normal” Fashion;
(b) Instruction Execution Whea Instruction Following Branch Always Bxecutes,

Chap. 8: Pipelined Syst ens: Low Level Parallelism

after the branch, and the system is designed so that the instruction will execute
regardlessof the result of the branch. With this techniqueapplied to this pipeline.
the resulting loop execution time is reduced by one cycle.

Studies have shown that this mechanism can be effectively utilized from
60-80% of the time, depending on the job type and the mechanismsinvolved. [f
it is determined that the instruction that follows the branch cannot be effective
utilized, then a NOP (no operation) ingtruction is used in that slot The net result
isthat when the instructionfollowing the branch is not a NOP, the branch penalty
is reduced by one.

Example 8.7: R SC system pipeline: One of the available R SC systems is
made by MIPS Corporation. What are the pipeline stages involved with the
system? The pipeline of the MIPS system is shown in Figure 830. Basi-
caly, five sections are identified in the figure. The time for execution is
indicated in the figure. and each section utilizes a time of one cycle, except
the write back section. The first section is used for instruction fetch. and it
has the responsibility of determining the red addressdf the instruction using
the trandation lookaside buffer, and then initiating the cache request for this
information. This architecturecalls for two separate cache systems, one for
the instruction stream and one for the data stream. The instruction will not
actually be provided until thefirst part of the decode stage.

The read/decode section obtains the instruction. decodesiit, and reads
any needed operands from the appropriate CPU registers. (RF stands for
register fetch.) The information is then presented to the ALU stage.

The ALU stage performs any required work on operands obtained by
the decode section. In the ingtruction is a LOAD or STORE, the TLB is inter-
rogated to perform the virtual to rea addresstrandation to identify a spot in
the data cache.

The memory section is responsible for handling LOAD and STORE
ingtructions. The system does not adlow operands used in arithmetic or
logic instructionsto be located in memory, so this section is responsiblefor
moving the information needed for instructions to the appropriate system
registers, and also for transferring information from registers back to
memory. The addresses nesded for this are generated in the half cycle
preceding the memory request

The find section has the task of writing back ALU results or values
loaded from the data cache to the register file.

This pipeline is capable of having five instructions executing at any
one time, each in its appropriatesection of the pipe. Note that TLB access
is required for both the instruction address and the data address, and that
these requests occur in different halves of a clock cycle. Thus, the TLB
accesseswill not slow the execution rate of the pipe.

Instruction Read/ Memory Write
Fetch Decode AL Results

| ned rcache o4 rRF Operaﬂ::a D-Cache 4+ w8 4

Pigure 8.30. Pipeline Stages f0 MIPS System.

Chop. 8. Pipelined System: LOWLevel Parallelism 441

8.4.

The pipeline utilizes the delayed instruction technique for conditional
branches, which we discussed above However, the delayed availability of
operands when performing load operations creates a condition similar to the
conditiona branch. The sysem utilizes the same technique with loads and
stores as with branches: interlocksam not built into the hardware, but the
software must be configured to assure that data not yet avalable is not
requested for an operation. If there is o independent instruction which can
be placed in the "delayed dot™ after a branch or between fetching informa
tion from memory and udng it, then a NCP must be inserted in the code.
This policy makes the hardwareeasier to build, since conditions for hdting
the pipe are removed by careful attentiont o the softwarebeforethe program
runs.

Pipelines for control and ingruction functions gppear in virtudly dl high
gpeed processors, and many microprocessors and smaler systems as wdl. The
benefits obtained by execution of independent ingtructionsin different sections of
a pipdine judify the complexity o the sysem. In those systems with a possibil-
ity of usng multiple system resources, interlocks must be provided to assure that
the ingtructions will produce the proper results Other systems, especially systems
with short pipelinesand systemsthat are RISC in nature, use softwaresystems that
creste programs so thet the results are correct, by presenting sequencesd instruc-
tions thet do not have resource conflicts.

Summary

The execution rate of computing systems can be increased by dividing the pro-
cessing that needs to be done into small piecesand executing these piecesfor dif-
ferent operations in the san@ time period. The division process bresks the
required processing into sections each of which perform a portion of the overall
function; the computationa action is accomplished by passing information from
one section to the next, and an operation is complete only when it has accom-
plished the work needed by al of the sections. Both dat a functionsand control or
instruction functionscan be divided into basic sectionsand utilize the concept of
pipdining.

With this technique, may different operationscan be in progressat the
same time, and each operation occupying a different stage of the pipeline. The
highest rate for execution of operations with pipdining occurs when the pipeline
is entirely full. When this is the case, eech dock cycle results in another com-
pleted function, and extremely high computetiona rates can occur. To support
this high execution rate, the data transfer mechanisms of the computationa de-
ment that move information to and from memory, and to and from registers
within the sysem, must be able to transfer operands and ingtructions a a rae
sufficiently high to keep the system busy. If the data system is not capable of this
high transfer rate. then the full benefits of pipeliningwill it be realized.

If the data system is capable of supporting the data transfers needed to
maintain high dat a rates within a computer, then performance degradations will
occur only when operations within the system are not independent. If the results
of one operation am required by the next, then the appropriate pipeline Secti on
must wait until the data isavailableto procesd. The independencemust be main-
tand in pipeines for both computational functions and control or instruction

Chap. 8 Pipelined Systems: Low Leve Paralielism

functions. Pipelinescan be required to wait for data informetion (data conflicts).
for information needed to generate operand addresses (address conflicts), and for
status information nesded to identify the target of a conditiona branch (branch
conflicts). These conditions arise when operations within the pipe are not
independent.

Performance improvements will occur in pipeline systems whenever steps
are taken to reduce the penalties associated with nonindependent operations. The
four techniques presented in this chapter all seek to reduce t he tira required to
resolve conflicts incurred by use df common system resources. The first tech-
nigque requires no hardware commitments; rather, the software is manipulated in
such a wey thet the instructions are fed into the pipeined ingtruction unit in such
away that the operationsare indgpendent. This results in a higher apparent exe-
cution rate. The second technigue is to provide an interna data path within the
pipdine. so tha operands can be obtained by sections of the pipe when the
operands become avalable rather than wating for them to be stored. This
reduces the time needed to wait for results.

Another technique presented is to alow the pipdine to identify the expected
target of a conditiond branch and begin execution at that point. This reducesto
zero the penalty associated with the branch if the guess is correct, but incursthe
cost of being able to flush from the pipe the effects of those ingtructions followed
if the guess is incorrect. The find technique presented is to design the system in
such a wey thet the ingtruction following a conditiona branch is dways executed.
ad rdv an the usrs of the sydem (compiler writers assembly language pro-
grammers ete.) to create the programsin such a wey that the instruction after the
branch is effectively utilized.

8.5. Problems

81 Develop aformulafor Tror, the total tine required to perform N independent
arithmetic operations in an arithmetic pipe. Assume that t he arithmetic pipe
contains6 stages. and that each stage executesin 100 nsec.

8.2 Desi gn apipelined floating point add unit. To accomplish this
a Giveablock diagram of t he floating point add operation.

b Describe each lement in the block diagram, and specify the hardware
needed to perform the work of that block.

¢, ldentify the delays associated with each of the blocks in the block
diagram.

d. Insert registers & appropriate locations in the block diagram. (Whet
&lays are associated with the registers?)

¢, Assuming that collison avoidanceis handled by another piece of the sys-
tem identify the controls needed in the pipelined unit, and show how the
control is handled

f. What is the data rate needed to keep the pipeline fuil?

8.3 ASsune that a high speed floating point multiply part is available at a resr
sonabl e cost Give r block diagram of a pipeline used to provide adivide
operation, If a ROMis availableto specify the first coefficient to 15 bits,
how many stagesar e required to provide a result correct to 56 bits (double

Chap. 8 Pipelined Systermns: Low Level Pardlelism 443

precision floating point)? If the multiply tekes 120 nsec, and the register
requires {0 nsec, what is the floating point dividerate? What mugt the data
rde of the memory system be to sustain t he highest operation rate?

8.4 Show a block diagram level design for a pipelined vector floating point add
system. Include vector registers capable of holding up to 64 elements of a
vector. Show on a time plot the action of each of the elements of the sys-
tem for a period of 10 clock cydes

8.5 Give a detailed logic diagram for the pipelined system of Problem 84.
Assume that you have memories which are 64 x 8 to work with, and that
these comein 20 pin packages. For this problem:

a Use the block diagram of Problem 84. Remember to incdude whatever
addressregistersae needed to identify the ementsdf the vectors.

b. Specify the devices nesded to implement the system.
C. ldentify the control lines needed to control the flow of datain the system,

d. Creste a control system that will assert the control signas in the proper
fashion to do the calculation as specified.

e Providethe logic diagramsof the system.

86 Discuss possble aternatives, as well as their advantages and disadvantages,
for the organization o a memory system to be used with the pipdined sys-
tem o Problem 8.4, ad the interconnection between the memary and the
VECtor registers.

8.7 Idenuty the moditications required to add another pipeined functiona unit
to the system of Problem 84. That is, the system as specified is capabled
doing a floating point add for vectorsof vaues. What would be required t0
add a functional unit that would utilize the same vector registers, but that
would do a floating point multiply for vectorsof numbers?

8.8 A pipelined control unit has six separate sages. The variouscollisions that
Can occur in the system can produce penalties of One cycle, two cycles, threa
cycles, or four cydes Develop a formula that will give the effectiva
speedup for the system as a funetion of the probability of each of the fous
pendties. Flat the formula such that the abscissaist he effective speedup;
and the ordinateist he probability of collisons. For the plot, vary only one
probability at atime, leaving t he other three probabilitieszero,

89 The instruction portion of a certain computer has been broken into five dis-
tinct parts for purposes of pipdining: instruction fetch, instruction decodes
operand fetch. instruction execution, and storage of results, Where necessarys
Assume that dl instructions mugt take al five cycles tO execute, Assuma
al sothat resultsare not available until after t he end of the fifth section. “Tha
code segment thet isto run on thisfictitious machineis

NADR1 with -512
LOAD R2 with 4000
LOAD R3 with 5000
LOAD R4 with 6000
OVER MOVE *R2, R8 * iy indirection, destination is RS,
MOW *R3, R9
ADDRS, RO

Chap. 8 Pipelined Systems: Low Level Paralldism

MOVE R9, *R4

ISZ R2 187 isincrement and Kip if zero,
ISZ R3

ISZ R4

ISZR1

INZ OVER

a. If there were nevaany problem with collisions, how much faster would
the pipelined systemrun then unpipelined system?

b. How long will it taket o execute the above section of code? Assune that
the tira stepis 100 nsec.

810 Consider a two address computer designed with a pipelined control section.
The sections are instruction fetch, decode, operand | fetch, operand 2 fetch.
execute. and store. Each section does its work in one cycle. The store sec-
tion can be bypassed for data needed for either operand fetch section. The
status bits are available for testing directly after the execute section. The
branch guess is the next ingtruction in line. How many cycles does it take
to computet he following section of code:

MOV 100,R0 100 decimd to counter,
labd Mov RQRrR2 Countto temporary.

ADD R3. R2 Add constant to temporary

MOV R2.*R0O Store in MEMOYY.

DEC RO Decrement counter.

BNZ labd Looptil done.

8,11 Consder acomputer with an instruction time of 8t units. Assmre that con-
ditionsare ideal and that this computer can be redesigned t 0 =k advantage
d pipelining, and that the pipeline consistsof four equal s¢gmems, For this
new machine:
a. How long will it t ake to start and completea sequence of 40 instructions?
b. A time penalty is associated with collisions in the pipeline. That is the
pipeline must halt for some period of time when an appticabls collision
occurs. (Remember that independent instructions do not camse collisions,
and that collisions result in modified data/address do not incor a pendty.)

How long does it take to completely execute the following code to add two
vectors? (1, J, K, L Sored in registers.)

10 - | LJ,K can be wed as addresses.

20 -1

D =K
-0 - L

label: CLA Clear the accumulator.

ADDMM Add inone value
INC| Bump the Address.
ADDMUJ] Add in another value.
INCJ Bump the address.
STOM[K] Store the result.
INCK Bump the address.
ISZL Check to see if done.

JMP label If not done, go back.
HALT Otherwise, quit

Chap. 8: Pipeiined Systems: Low Level Paraltelism 445

812 Considert he ingtruction unit of a computer; a design team wantsto pipeine
the system. Curenty the process of fetching, decoding, and executing
instructions takes 600 nsec. By vay clever work, you have been dile to
divide the unit into six separate actions fetch, decode, operand 1 fetch,
operand 2 fetch, execute, Sore result. Each of these actions will take 100
nsec, and single operand ingtructions do nething during operand 2 fetch. A
data collision in a register must wait for the correct value to reach the regis-
ter. By being extremely clever the design team has eliminated the address
collision problem.

a If this machine executes 60 ingtructions, all independent SO there are o
collisons, how much time eapses between initiation of the first ingtruction
and completionof the last?

b. Thefollowing set o ingtructionsadds two vectorstogether and stores the
find vdue in a new vector. The conditiona jump indruction here is
designed to assume that the jump will be successful. How long will it teke
to complete this set o ingtructions?

300 = § (a regider)

400 = K (aregider)

20~ L (aregide)
LABH.: MOVE MEMI(LIN (N is a register)

ADD MEM[J|.N

DECI

STORE N.MEMIK]

DECK

DECL

INZ LABEL

HALT

c. If the machine were to stay in the above loop (LABEL-INZ) forever, Whet
wouldt he effective ingtruction time be?

8.6. References and Readings

{AnSp67] Anderson, D, W.. F, J. Sparacio and R M. Tomasulo, “The [BM Symmﬂﬂf
Modd 91: Machine Philosophy and Instruction-Handling,” /BM Jownal of Research
and Developmerss. Vol. 11, No. 1, Januery 1967, pp. 8~24.

[Baer84] Baa, | L, “Computer Architecture,” Computer. Vol. 17, No. 10, October 1984,
pp. 77-87.

[Baers0) Baa. | L. Computer System Architecture. Rockville, MD: Computer Sciencs
Press, 1980.

{BaBr68] Bamnes, G. H., R M Brown, M Kato, & al., “The Mliac IV Compiiter, /EZH
Transactions on Computers. Vol. C-17, No. 8, August 1968, pp. 746~757.

[Baxc80] Batcher, K. E., “The Design of a Massively Parallel Processor,” JEEE. Trons8
tions on Computers. Vol. C-29, No. 9, September 1980, pp. 836-840

{BeNe71] Bell, C. G. and A. Newell, Computer Structures: Readings and ExompiSuin
York: McOraw-Hiit Book Company, 1971.

[BuGod6] Burks, A. W., H. H. Gokistine, and J, von Neumann, “Preliminary. Dilciiion
the Logical Design of an Electronic Computing Instrument,” Immuum
Studies, 1946, reprinted in [Swar76).

Chap. 8 Pipelined Systems: Low Level Paralielism

[Chen80] Chen, T. C.,"Overlapand Pipeline Processing,” in [Ston80], pp. 427-485.

[Chen71] Chen, T. C. "Parallelism Pipelining, and Computer Efficiency,” Computer
Design. Vel. 10, No. 1, January 1971, pp. 6974,

[DaviT1} Davidson, E. S. The Design and Control of Pipelined Function Generators,”
Proceedings of the |EEE International Conference on Systems Networks and Com-
puters. 1971, pp. 19-21.

[DRGI8S) DeRosa, J, R Glackemeyer, and T. Knight. *'Design and Implementation of the
VAX 8600 Pipeline,” Computer. Vol. 18 No. 5, My 1985, pp. 3848

[FoMERS] Fossum, T, J. B. McElroy, and W. English, "An Qverview o the YAX 8600
System,” Digital Technical Jeurnal. Hudson, MA: Digital Equipment Corporation,
1985. pp. 8-23.

[BrHe82} Gross, T. R. and I. L. Hennessy, “Optimizing Delayed Branches" Proceedings
o the /5th Annual Workshop on Microprogramming. New York, NY: | EEE Com-
puter Society Press, 1982. pp. 114-120.

[Hitigs]) Hillis, W. D. The Connection Machine. Cambridge, MA: MIT Press, 1985.

[HwBr84] Hwang, K, and F. A Briggs, Computer Architectureand Parallel Processing.
New York: McGraw-Hill, 1984,

[Kane87] Kane Gerry, MIPS R2000 RISC Architecture. Englewood Cliffs NJ: Prentice
Hall. 1987.

{Kell75] Keller, R. M.. “Lookahead Processers,” ACM Computing Surveys. Vol. 7, No. 4,
1975, pp. 177-195.

[Koggsl] Kogge, P. M. The Architectureof Pipelined Computers. New York: McGraw-
Hill, 1981.

[KuSm86] Kunkel, S R., and J. E. Smith, “Optimal Pipelining in Supercomputers,”
Proceedings of the 13th International Symposium 0N Computer Architecture. Y ash-
ington, DC: IEEE Computer Society Press, 1986, pp. 404-411,

{RaLi77} Ramamoorthy, C. V. and H F. Li, “Pipeline Architecture,” ACM Computing Sur-
veys. Vol. 9, No. |. March 1977, pp. 61-102.

[Russ78] Russell, R. M., “The CRAY-1 Computer System,” Communications Of the ACM.
Vol. 21, No. 1, January 1978, pp. 63-72.

[Ryma82] Rymarczyk, J., "' Coding Guidelines for Pipelined Processors,” Proceedings of
the ACM Symposium on Architectural Support for Programming Languages and
Operating System. New York: ACM, 1982, pp. 12-19.

[SiBe82] Siewiorek, D. P, C. G. Belt, and A Newell, Computer Structures: Principlesand
Examples. New York: McGraw-Hill Book Company. 1982

{Site78] Stes R L., "An Analysis § the CRAY-1 Computer,” Proceedings of the 5th Sym-
posium on Computer Architecture, New Yak: | BEEE Computer Society Press 1978,
pp. 101-106.

[Swna80] Stone, H. S., (Bd.), Introduction to Computer Architecture. Chicago, IL: Science
Research Associates, 1980.

[Swn87] Star, H. S., High-Performance Computer Architecture. Reading MA: Addison-
Wesley Publishing Company, 1987.

{Swar76] Swartzlander, E, E., Ir. (Ed.), Computer Design Development: Principal Papers.
Rochelle Park, NJ: Hayden Book Company, Inc., 1976.

Chap. 8 Pipelined Systems: Low Level Parallelism 447

[Thors4] Thomeon, J. E., “Parallel Operstion in the Control Data 6600,” Proceedings of
the Fall Joint Computer Conference. AFIPS, Montvaie, NEAFIPS Press, Vol. 24,
1964, pp. 3340,

[Thur76) Thurber, K. J., Large Scale Computer N chitect ure. Parallel and Associative Pro-
cessers. Rochelle Park, NI Hayden Book Company, Inc., 1976.

{Tomas7] Tomasulo, R. M., “An Efficient Algorithm f a Exploiting Multiple Arithmetic
Units,” iBM Journal of Research and Developmens. Vol. 11, No. 1, January 1967,
. 5-3

[TrCh8s] Troiani, M., S S Ching, N N. Quaynex, et al., “The VAX 8600 I Bax. A P
lined Implementation of the VAX Architecture,” Digital Technical Journal. Hudson,
MA: Digital Equipment Corp., 1985. pp. 24-42.

[WeRo84] Wedig, R G., and A. Rose, “The¢ Reduction of Branch Instruction Execution
Overhesd USng Structured Control How." Eleventh Annua International Confer-
ence on Computer Architecture, Slver Springs, MD: (EEE Computer Society Press,
June 1984. pp. 119-125.

[WeSm84] Weiss, S. and J E Smith, "Indruction Lssus Logic for Pipelined Supercomput-
ers,” Transactions on Computers. Vol. C-33. No. 11, November 1934, pp.
1013-1022.

Chap:. 8: Pipefined Systems: L ow Level Parallelism

