
Created by Zsolt Voroshazi, PhD
voroshazi.zsolt@mik.uni-pannon.hu

EFOP-3.4.3-16-2016-00009

A felsőfokú oktatás minőségének és hozzáférhetőségének
együttes javítása a Pannon Egyetemen

Updated: 18 Apr. 2024.

FPGA-BASED EMBEDDED
SYSTEM DEVELOPMENT

(VEMIVIB334BR)

7. VIVADO – EMBEDDED SYSTEM
Creating custom peripherals to BSB #3 (MyLED Peripheral)

1. Introduction – Embedded Systems

2. FPGAs, Digilent ZyBo development platform

3. Embedded System - Firmware development environment (Xilinx Vivado – „EDK”

Embedded Development)

4. Embedded System - Software development environment (Xilinx VITIS – „SDK”)

5. Embedded Base System Build (and Board Bring-Up)

6. Adding Peripherals (from IP database) to BSB

7. Creating and adding custom (MyLED) Peripherals to BSB

8. Development, testing and debugging of software applications – Xilinx VITIS (SDK)

9. Design and Development of Complex IP cores and applications (e.g. camera/video/

audio controllers)

Topics covered

3

• Make sure that the path of the Vivado/VITIS project to be

created does NOT contain accented letters or "White-space"

characters!

• Have permissions on the drive you are working on:

– If possible, DO NOT work on a network / USB drive!

• The name of the project and source files should NOT start with

a number, but they can contain a number! (due to VHDL)

• Use case-sensitive letters consistently in source file and

project!

• If possible, the name of the project directory, project and

source file(s) should be different and refer to their function for

easier identification of error messages.

• The directory path should be no longer than 256 characters!

Important notes & Tips

4

XILINX VIVADO DESIGN SUITE
Creating custom IP core to the Embedded Base System

• Vivado – Block Designer

– Create and add a custom MyLED IP peripheral to

the block design (Embedded Base System) not in

the IP Catalog,

– Parameterize IP blocks, set connections, interfaces,

address, and external ports (if needed),

• VITIS - SDK

– Create SW driver

– Customize compiler settings,

– Creating a software application: LEDWrite ()

Task

6

• Create a new project based on previous lab (LAB02_A) by

using the Xilinx Vivado (IPI) embedded system designer,

– LAB02_A project → Save as… → LAB03 !

• Create and generate custom IP Peripheral in Package IP Wizard,

• Select and add custom IP Peripheral to the base system,

• Parameterize and connect them, make external ports,

• Overview of the created project,

– Implementation and Bitstream generation (.BIT) is now necessary,

because PL side will also be configured!

• Create peripheral software application(s) running on ARM by

using the Xilinx VITIS environment (~SDK),

• Verify the operation of the completed embedded system and

software application test on Digilent ZyBo.

Main steps to solve the task

7

• Start Vivado

– Start menu → Programs → Xilinx Design Tools → Vivado

2020.1

• Open the previous project! (LAB02_A)

– File → Project → Open… / Open Recent…

– <projectdir>/LAB02_A/<system_name>.xpr →

Open

• File → Project → Save As… → LAB03

– (This will save the former project LAB02_A as LAB03)

Project – Open / Save as…

8

PS side:

• ARM hard-processor (Core0)

• Internal OnChip-RAM controller

• UART1 (serial) interface

• External DDR3 memory controller

Test system to be implemented

9

PL side (in FPGA logic)

• LAB03: custom MyLED IP

ARM

Cortex-A9

AXI

Interconnect

Block

DDR3

Memory

Controller

AXI

Interconnect

Block

AXI-BRAM Controller
Memory

GPIO

UARTRS232

DIP Switches

AXI4 AXI4

AXI4-
Lite

AXI4-
Lite

AXI4-
Lite

GPIO

LED_IP

Push-ButtonsAXI4-
Lite

LED

BRAM

M_AXI_G
P0

M_AXI_G
P1

PS

PL

Timer

AXI4-
Lite

I2C PMOD_TMP2

Add IP path

10

• File → IP → New Location... → Next

10

• Tools → Create and Package New IP… → Next

IP Wizard – LED IP peripheral (I.)

11

1

2

3

4

AXI interfész Little-Endian, hagyományos formátumot
definiál!

* IP neve: csak
kisbetűs legyen!!

IP Wizard – LED IP peripheral (II.)

12

1

2
3

4

= Edit in IP Packager…

Project Manager – Package IP template

13

Hierarchy (design sources):

• led_ip_v1_0.vhd (top-level wrapper = „ interface
logic” template)
– led_ip_v1_0_S_AXI.vhd (user-logic =„R/W

register template”)

1

2 3

XPR: the generated IP peripheral can be opened as a separate Vivado project (edit_led_ip_v1_0.xpr)

IP-XACT: component.xml descriptor

• HDL source -

– <ip_proj_dir>/ip_repository/ ip_repo/led_ip_1.0/hdl

• top entity : led_ip_v1_0.vhd

• user logic : led_ip_v1_0_S_AXI.vhd

• BD – Block Diagram -

– <ip_proj_dir>/ip_repository / ip_repo/ led_ip_1.0/ bd

• bd.tcl

• XGUI

– <ip_proj_dir>/ip_repository / ip_repo/ led_ip_1.0/ xgui

• Example design

– <ip_proj_dir>/ip_repository / ip_repo/ led_ip_1.0/ example designs

• /Bfm_design : Bus Functional Simulation sources

• debug_hw_design :

• Driver

– <ip_proj_dir>/ip_repository / ip_repo/ led_ip_1.0/ drivers / led_ip_v1_0/src

• makefile : Makefile

• header : led_ip.h

• source : led_ip.c

• selftest : led_ip_selftest.c

• Driver interface

– <ip_proj_dir>/ip_repository / ip_repo/ led_ip_1.0/ drivers / led_ip_v1_0/ data

• mdd : led_ip.mdd

• tcl : led_ip_v2_1_0.tcl

Generated components of IP peripheral

14

led_ip_v1_0

FW sources

SW source,

drivers

Generate IP peripheral – IP Catalog

15

NOTE: IP-XACT is a standard xml-based descriptor (component.xml) that contains definitions, macros,
descriptors of custom, reusable, pluggable IPs that can be integrated into an electronic circuit system - in our
case an embedded system.

• Open the „top-level” led_ip_v1_0.vhd

• Add the following lines to the file:

Modify peripheral template I. - HDLs

16

1

2

3

4

Finally (CTRL+S or Save)

5

6

• Open „sub-level” led_ip_v1_0_S_AXI.vhd-t (in the „user-logic”)

• Add the following lines to the file: :

Modify peripheral template II. - HDLs

17

1

2

3

Finally (CTRL+S or Save)

Synthesis – Package IP

18

• Flow Navigator menu → Run Synthesis (*Save before!)

– Open Synthesized IP peripheral design, OK

– Warning messages are allowed (the design can be

implemented),

– (Here you can simulate the behaviour of your IP periphery).

Project Manager → Edit Package IP:

• Open led_ip

Package IP – Customization Parameters

19

1

2

3

4

Package IP – Customization GUI

20

1

2

3

Finally: Click on „Review and Package”

4

Package IP – Review and Package

21

Remember where the
"led_ip" project was generated

1

2

3

5.) OK.
Finally Re-Package IP. → YES
(IP project will automatically close)

4

5

• Open project → Choose „LAB03”

– Project Manager → Settings

– Select IP → + → Add IP path

Return to LAB03

22

1

2

New IP core can be added in Vivado (two options):

a.) Block Diagram View→ Add IP

b.) Open IP Catalog -> Select IP→ Double-click→ Add IP to Block Design

Add your own LED_IP peripheral on the PL side to the BSB

Adding and connecting PL side
LED_IP to the base system I.

23

2

1

3

4

Now, for your own IP module (LED_IP) you need to

configure the following in Vivado (can be manual /

automatic!):

– a.) interface connection between IP module and bus

system (AXI),

– b.) assignment of the IP module to an address range (Base-

High Addresses),

– c.) assigning I/O ports of IP modules to external ports,

– d.) finally, assigning external ports to physical FPGA pins

(.XDC editing) - IO planning.

Adding and connecting PL side
LED_IP to the base system II.

24

Double-click on led_ip_0 and examine its parameters.

Block diagram

25

Parameterising of LED_IP

26

Connect LED_IP

27

1

2

3

Completed block design

28

?

• Block Design→ Select „Address Editor”

• Assign the unmapped IP peripheral into the memory address:

– a.) automatically – address generation vs. b.) manually (now)

LED_IP – configure memory address

29

1

2

*Address ranges must be aligned into 2^n size

and cannet be overlapped!

led_ip_0 must be connected to the FPGA pins on the ZyBo card:

1.) The data ports of the LED_IP instance must be connected to the external physical FPGA pins,

2.) If necessary, define the names of the external ports (e.g. led_pin), then

3.) In the <system>.XDC file, the pin of the FPGA must be specified.

LED_IP – Assign external ports

30

1

2

• Refresh the Block Design:

– Regenerate Layout

– Validate Design (DRC)

– Flow Navigator → Run Synthesis

• Then - Open Synthesized Design , OK

• Final step, assign led_pin<3:0> to FPGA IO pins!

– Layout menu -> IO planning layout view

Block Design – Layout synthesis

31

We use now I/O planning (GUI) for pin assignments!

IO planning – pin assignments

32

1 2

3

OCTI/O StdPackage Pin

? ? ?

File → Save Constraints or CTRL+S. Then, save the XDC file as: „lab03.xdc”

OCTIO StdSite

Anode(+) Cathode(-)

Common
Cathodes

Implementation and Bitstream
generation

33

• Flow Navigator menu → Run Implementation

– It can filter out possible wrong assignments / errors,

– Warning messages are allowed (the design can be

implemented),

– Some floating wires are also allowed (e.g. Peripheral Reset,

etc.).

– While Vivado is working you can check out the

synthesis/implementation reports!

Finally, run the Bitstream generation:

• Flow Navigator → Generate Bitstream

• Question-1.) how many resources are occupied on PL?

• Solution: Reports → Report Utilization (or Project

Summary)

Implementation reports

34

+----------------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------------------+------+-------+-----------+-------+
Slice LUTs	673	0	17600	3.82
LUT as Logic	611	0	17600	3.47
LUT as Memory	62	0	6000	1.03
LUT as Shift Register	62	0		
Slice Registers	994	0	35200	2.82
Register as Flip Flop	994	0	35200	2.82
+----------------------------+------+-------+-----------+-------+

• File → Export → Export Hardware…

VIVADO Export HW → VITIS (~SDK)

35

1

2

VIVADO Export HW → VITIS (cont.)

36

Select „Include bitstream” option as output:

2

1

Export HW → VITIS (cont.)

37

Set XSA* file name and export directory path:

*Xilinx® Support Archive: new hw descriptor format since VITIS 2020.x (see the next slide)

1

2

3

USING XILINX VITIS
LAB03. Creating a software test application for MyLED IP

1. Creating a Vivado project, then Export HW → VITIS,

2. Creating a new application or an application generated from

a C/C ++ template (e.g. MyLEDApp as system monitor test):

a. Importing .XSA

b. Generating and compiling an application project containing a

platform and a domain inside (~BSP: Board Support Package),

c. Generating a Linker Script (specifying memory sections, .LD),

d. Writing / generating and compiling the SW application

3. Creating a ‘Debug Configuration’ for hardware debugging

4. Connecting and setup a JTAG-USB programmer,

– Configuring the FPGA (.BIT hence PL-side was set)

5. Setup a Serial terminal/Console (USB-serial port),

6. Debug (insert breakpoints, stepping, run, etc.)

VITIS – General steps of application
development

39

√

Starting VITIS

40

• Set workspace directory properly (lab03):

– Recommended to use vitis_workspace as a

subdirectory in your lab folder. Launch it...

1

2

OR externally

From Vivado: Tools menu → Launch VITIS IDE

Xilinx VITIS – Create Application

41

Recall the steps of the former LAB01/LAB02 …

1. Create a new application project

– File → New → Application Project…

2. Platform – Create a new platform from HW (XSA)

– Browse… for LAB03 system_wrapper.xsa. Open it.

– ! Do not select the „Generate boot components”

3. Application project details

– Type „MyLEDApp” as project name

– Type „MyLEDApp_system” as system project name

– Select ps7_cortexa9_0 as target ARM core 0

4. Domain: leave settings as default (standalone)

• x

Example I.) Creating MyLEDApp as
empty application

42

1

2

VITIS GUI – Main window (HW)

43

1

2

Xilinx menu→ SW Repositories

VITIS – Add Driver Repository

44

2

4

3

1

VITIS – Main window (SW-driver)

45

1

2

• Project Explorer → Right Click MyLEDApp’s → Board

Support Package Settings

VITIS – Set LED_IP driver

46

3

1

2

• Project Explorer → double click on

lab3_led_ip.c → Open the Outline → double

click on xparameters.h

(This important header file can be generated after

BSP compiled, and parameter values derived from

Vivado settings)

• #define XPAR_LED_IP_0_DEVICE_ID 0

This macro defines our „LED_IP” custom peripheral

• This #define can be used to write to LEDs

VITIS – SW project

47

• Path :
– <lab03_project>\system_wrapper\hw\drivers\

led_ip_v1_0\src

• Investigate the content of .c, and .h source

files (generated from Vivado tool)!

• Writing to the LED:

LED_IP drivers

48

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data) \

Xil_Out32((BaseAddress) + (RegOffset), (u32)(Data))

Analyzing LED_IP application

49

• 1.) Read the actual state of dip switches (in an infinte loop)

• 2.) Write the value of dip switches on our LED_IP

*There is a build problem with VITIS 2020.x when creating a custom AXI-lite based IP.

Makefile generation did not work properly (build error).

1. Open system_wrapper\ps7_cortexa9_0\standalone_ps7_cortexa9_0\

bsp\ps7_cortexa9_0\libsrc\led_ip_v1_0\src\Makefile

2. Modify Makefile

Important Remark* - Makefile

50https://support.xilinx.com/s/question/0D52E00006hpOx5SAE/drivers-and-makefiles-problems-in-vitis-20202

COMPILER=

ARCHIVER=

CP=cp

COMPILER_FLAGS=

EXTRA_COMPILER_FLAGS=

LIB=libxil.a

RELEASEDIR=../../../lib

INCLUDEDIR=../../../include

INCLUDES=-I./. -I${INCLUDEDIR}

INCLUDEFILES=*.h

#LIBSOURCES=*.c
LIBSOURCES=$(wildcard *.c)

#OUTS = *.o

OUTS = $(addsuffix .o, $(basename $(wildcard *.c)))

libs:
echo "Compiling led_ip..."
$(COMPILER) $(COMPILER_FLAGS) $(EXTRA_COMPILER_FLAGS) $(INCLUDES) $(LIBSOURCES)
$(ARCHIVER) -r ${RELEASEDIR}/${LIB} ${OUTS}
make clean

include:

${CP} $(INCLUDEFILES) $(INCLUDEDIR)

clean:
rm -rf ${OUTS}

• Generate Linker Script to the internal on-chip PS7

RAM0

– Set the Heap / Stack size to 1KB!

– Now rebuild the MyLEDApp again!

Q: What is the size of MyLEDApp.elf binary?

Generate Linker Script & Build

51

'Invoking: ARM v7 Print Size'
arm-none-eabi-size MyLEDApp.elf |tee "MyLEDApp.elf.size"

text data bss dec hexfilename
23368 1176 8248 32792 8018 MyLEDApp.elf

'Finished building: MyLEDApp.elf.size'

MyLEDApp – Verification result

• Check debug output on VITIS terminal. What did you experience?

Connected to COMX at 115200

-- Start of the Lab03 LedIP Program --

Dip Switches initialized successfully!

Push Buttons initialized successfully!

State of Dip switches 15!

State of Dip switches 0!

State of Dip switches 3!

State of Dip switches 0!

State of Dip switches 3!

State of Dip switches 4!

……

52

• To the ARM-AXI based system created in the previous (5. –

LAB02_A), here we designed and added a new PL-side custom

LED IP peripheral, which is not part of the Vivado IP Catalog.

• Peripheral were properly configured to the BSB and connected

to the external I/O pins of the FPGA.

• We examined both the Block Diagram and the report files.

• Finally, we verified the completed embedded system

(HW+FW) and the correct operation of a SW application

(MyLEDApp) in VITIS unified environment.

LAB03 – Summary

53

• Create a Calculator SW application project (CalcTest)

• Modify the previous MyLEDApp SW application to implement

a calculator capable of 4 basic operations.

– Two operands (A,B) will be 2-2 bits, each: A[1:0], B[1:0], which are the

values of the dip switches (dip).

– The following operations can be performed using pushbuttons (pb):

• pb[2:0] = "000" : addition,

• pb[2:0] = "001" : subtraction,

• pb[2:0] = "010" : multiplication,

• pb[2:0] = "011" : division.

• pb[2:0] = "100" : exit

– Display the results of these operations - with only the integer part of

the division - on MyLED[3:0] (also with xprintf())

Task – Calculator test

54

CalcTest – Verification result

55

• Check debug output on VITIS terminal. What did you experience?

Calculator Program --

Dip Switches initialized successfully!

Push Buttons initialized successfully!

Note: Addition [+]: PB[2:0]=000

Subtraction [-]: PB[2:0]=001

Multiplication [*]: PB[2:0]=010

Division [/]: PB[2:0]=011

Exit : PB[2:0]=100

Initial value of result = 0

Partial result after addition 3 + 3 = 6

Partial result after subtraction 3 - 3 = 0

Partial result after multiplication 3 * 3 = 9

Partial result after division 3 / 3 = 1

Partial result after addition 2 + 3 = 5

Partial result after subtraction 2 - 3 = -1

Partial result after multiplication 2 * 3 = 6

Partial result after division 2 / 3 = 0

Exiting from Lab3a calculator!
…

BER_lab3a_calc_vaz

THANK YOU FOR
YOUR KIND
ATTENTION!

EFOP-3.4.3-16-2016-00009

A felsőfokú oktatás minőségének és hozzáférhetőségének

együttes javítása a Pannon Egyetemen

